Abstract

This paper presents a rigorous analysis of a promising bi-modal multirotor vehicle that can roll and fly. This class of vehicle provides energetic and locomotive advantages over traditional unimodal vehicles. Despite superficial similarities to traditional multirotor vehicles, the dynamics of the vehicle analyzed herein differ substantially. This paper is the first to offer a complete and rigorous derivation, simulation, and validation of the vehicle's terrestrial rolling dynamics. Variational mechanics is used to develop a six degrees-of-freedom dynamic model of the vehicle subject to kinematic rolling constraints and various nonconservative forces. The resulting dynamic system is determined to be differentially flat and the flat outputs of the vehicle are derived. A functional hardware embodiment of the vehicle is constructed, from which empirical motion data are obtained via odometry and inertial sensing. A numerical simulation of the dynamic model is executed, which accurately predicts complex dynamic phenomena observed in the empirical data, such as gravitational and gyroscopic nonlinearities; the comparison of simulation results to empirical data validates the dynamic model.

References

References
1.
Choi
,
S. H.
, and
Zhu
,
W. K.
,
2012
, “
Performance Optimisation of Mobile Robots for Search-and-Rescue
,”
Appl. Mech. Mater.
,
232
, pp.
403
407
.10.4028/www.scientific.net/AMM.232.403
2.
Murphy
,
R. R.
,
Tadokoro
,
S.
, and
Kleiner
,
A.
,
2016
,
Disaster Robotics
, B. Siciliano and O. Khatib O, eds.,
Springer Handbook of Robotics, Springer
, Cham, Switzerland. 
3.
Bishop
,
B.
,
Crabbe
,
F.
, and
Hudock
,
B.
,
2005
, “
Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot
,”
Adv. Rob.
,
19
(
8
), pp.
1
27
.
4.
Neumann
,
M.
,
Predki
,
T.
,
Heckes
,
L.
, and
Labenda
,
P.
,
2013
, “
Snake-Like, Tracked, Mobile Robot With Active Flippers for Urban Search-and-Rescue Tasks
,”
Ind. Rob.
,
40
(
3
), pp.
246
250
.10.1108/01439911311309942
5.
Santos
,
J. M.
,
Krajník
,
T.
, and
Duckett
,
T.
,
2017
, “
Spatio-Temporal Exploration Strategies for Long-Term Autonomy of Mobile Robots
,”
Rob. Auton. Syst.
,
88
, pp.
116
126
.10.1016/j.robot.2016.11.016
6.
Kalantari
,
A.
, and
Spenko
,
M.
,
2014
, “
Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1278
1285
.10.1109/TRO.2014.2337555
7.
Takahashi
,
N.
,
Yamashita
,
S.
,
Sato
,
Y.
,
Kutsuna
,
Y.
, and
Yamada
,
M.
,
2015
, “
All-Round Two-Wheeled Quadrotor Helicopters With Protect-Frames for Air-Land-Sea Vehicle (Controller Design and Automatic Charging Equipment
,”
Adv. Rob.
,
29
(
1
), pp.
69
87
.10.1080/01691864.2014.991754
8.
Morton
,
S.
, and
Papanikolopoulos
,
N.
,
2017
, “
A Small Hybrid Ground-Air Vehicle Concept
,”
IEEE International Conference on Intelligent Robots and Systems
, Vancouver, BC, Sept. 24–28, pp. 5149–5154. 10.1109/IROS.2017.8206402
9.
Kossett
,
A.
, and
Papanikolopoulos
,
N.
,
2011
, “
A Robust Miniature Robot Design for Land/Air Hybrid Locomotion
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
4595
4600
.10.1109/ICRA.2011.5979845
10.
Kawasaki
,
K.
,
Zhao
,
M.
,
Okada
,
K.
, and
Inaba
,
M.
,
2013
, “
MUWA: Multi-Field Universal Wheel for Air-Land Vehicle With Quad Variable-Pitch Propellers
,”
IEEE International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
1880
1885
11.
Boria
,
F. J.
,
Bachmann
,
R. J.
,
Ifju
,
P. G.
,
Quinn
,
R. D.
,
Vaidyanathan
,
R.
,
Perry
,
C.
, and
Wagener
,
J.
,
2005
, “
A Sensor Platform Capable of Aerial and Terrestrial Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, AB, Aug. 2–6, pp.
3959
3964
.10.1109/IROS.2005.1545597
12.
Sreevishnu
,
S.
,
Koshy
,
M.
,
Krishnan
,
A.
, and
Das
,
G. P.
,
2018
, “
Kinematic Design, Analysis and Simulation of a Hybrid Robot With Terrain and Aerial Locomotion Capability
,”
MATEC Web of Conf.
, 172, p. 03008. 10.1051/matecconf/201817203008
13.
Stewart
,
W.
,
Weisler
,
W.
,
Macleod
,
M.
,
Powers
,
T.
,
Defreitas
,
A.
,
Gritter
,
R.
,
Anderson
,
M.
,
Peters
,
K.
,
Gopalarathnam
,
A.
, and
Bryant
,
M.
,
2018
, “
Design and Demonstration of a Seabird-Inspired Fixed-Wing Hybrid UAV-UUV System
,”
Bioinspiration Biomimetics
, 13(5). 
14.
Siddall
,
R.
, and
Kovač
,
M.
,
2014
, “
Launching the AquaMAV: Bioinspired Design for Aerial-Aquatic Robotic Platforms
,”
Bioinspiration Biomimetics
,
9
(
3
).
15.
Maia
,
M. M.
,
Mercado
,
D. A.
, and
Diez
,
F. J.
,
2017
, “
Design and Implementation of Multirotor Aerial-Underwater Vehicles With Experimental Results
,”
IEEE International Conference on Intelligent Robots and Systems (IROS)
, Vancouver, BC, Sept. 24–28, pp.
961
966
.10.1109/IROS.2017.8202261
16.
Kuo
,
A. D.
,
2007
, “
Choosing Your Steps Carefully
,”
IEEE Robot. Autom. Mag.
,
14
(
2
), pp.
18
29
.10.1109/MRA.2007.380653
17.
Atay
,
S.
,
Jenkins
,
T.
,
Buckner
,
G.
, and
Bryant
,
M.
,
2020
, “
Energetic Analysis and Optimization of a Bi-Modal Rolling-Flying Vehicle
,”
Int. J. Intell. Robot. Appl.
,
4
, pp.
3
20
.10.1007/s41315-020-00119-2
18.
Stebler
,
S.
,
Mackunis
,
W.
, and
Reyhanoglu
,
M.
,
2016
, “
Nonlinear Output Feedback Tracking Control of a Quadrotor UAV in the Presence of Uncertainty
,” 14th International Conference on Control, Automation, Robotics and Vision (
ICARCV 2016
), Phuket, Thailand, Nov. 13–15, pp.
1
6
.10.1109/ICARCV.2016.7838569
19.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
IEEE Rob. Autom. Mag
,
19
(
3
), pp.
20
32
.10.1109/MRA.2012.2206474
20.
L'Afflitto
,
A.
, and
Mohammadi
,
K.
,
2017
, “
Equations of Motion of Rotary-Wing Unmanned Aerial System With Time-Varying Inertial Properties
,”
J. Guid. Control. Dyn.
,
41
(
2
).10.2514/1.G003015
21.
Lee
,
T.
,
Leok
,
M.
, and
Mcclamroch
,
N. H.
,
2012
, “
Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)
,” American Control Conference (
ACC
), Montreal, QC, Canada, June 27–29, pp. 4649–4654.10.1109/ACC.2012.6315143
22.
Murray
,
R. M.
,
Sluis
,
W.
,
Rathinam
,
M.
, and
Sluis
,
W.
,
1995
, “
Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems
,” Proceedings of the 1995 ASME International Congress and Exposition. 
23.
Mizutani
,
S.
,
Okada
,
Y.
,
Salaan
,
C. J.
,
Ishii
,
T.
,
Ohno
,
K.
, and
Tadokoro
,
S.
,
2015
, “
Proposal and Experimental Validation of a Design Strategy for a UAV With a Passive Rotating Spherical Shell
,” IEEE International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1271
1278
.10.1109/IROS.2015.7353532
24.
Whitman
,
A.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2018
, “
Prediction of Wheel Slipping Limits for Mobile Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
4
), p.
041002
.10.1115/DSCC2018-9053
25.
Yin
,
H.
,
Chen
,
Y.-H.
, and
Yu
,
D.
,
2019
, “
Controlling an Underactuated Two-Wheeled Mobile Robot: A Constraint-Following Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p.
071002
.10.1115/1.4043112
26.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
Addison-Wesley
,
Reading, MA
.
27.
Luca
,
A. D.
, and
Oriolo
,
G.
,
1995
, “
Modelling and Control of Nonholonomic Mechanical Systems
,” Kinematics and Dynamics of Multi-Body Systems, CISM International Centre for Mechanical Sciences (Courses and Lectures, Vol. 360), Springer, Vienna, Austria.
28.
Powers
,
C.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2015
, “
Quadrotor Kinematics and Dynamics
,”
Handbook of Unmanned Aerial Vehicles
, k. Valavanis and G. Vachtsevanos, eds., Springer, Dordrecht, The Netherlands.
29.
Lu
,
H.
,
Liu
,
C.
,
Coombes
,
M.
,
Guo
,
L.
, and
Chen
,
W.-H.
,
2016
, “
Online Optimisation-Based Backstepping Control Design With Application to Quadrotor
,”
IET Control Theory Appl.
,
10
(
14
), pp.
1601
1611
.10.1049/iet-cta.2015.0976
30.
He
,
X.
,
Kou
,
G.
,
Calaf
,
M.
, and
Leang
,
K. K.
,
2019
, “
In-Ground-Effect Modeling and Nonlinear-Disturbance Observer for Multirotor Unmanned Aerial Vehicle Control
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
7
), p.
071013
.10.1115/1.4043221
You do not currently have access to this content.