Abstract

For human–machine interaction, the forward progression of technology, particularly controls, regularly brings about new possibilities. Indeed, healthcare applications have flourished in recent years, including robotic rehabilitation, exercise, and prosthetic devices. Testing these devices with human subjects is inherently risky and frequently inconsistent. This work offers a novel simulation framework toward overcoming many of these difficulties. Specifically, generating a closed-loop dynamic model of a human or a human subsystem that can connect to device simulations allows simulated human–machine interaction. In this work, a muscle-actuated open kinematic chain linkage is generated to simulate the human, and a backstepping controller based on inverse dynamics is derived. The control architecture directly addresses muscle redundancy, and two options to resolve this redundancy are evaluated. The specific case of a muscle-actuated arm linkage is developed to illustrate the framework. Trajectory tracking is achieved in simulation. The muscles recruited to meet the tracking goal are in agreement with the method used to solve the redundancy problem. In the future coupling such simulations to any relevant simulation of a machine will provide safe, insightful preprototype test results.

References

References
1.
Krebs
,
H. I.
,
Volpe
,
B. T.
,
Aisen
,
M.
,
Hening
,
W.
,
Adamovich
,
S.
,
Poizner
,
H.
,
Subrahmanyan
,
K.
, and
Hogan
,
N.
,
2003
, “
Robotic Applications in Neuromotor Rehabilitation
,”
Robotica
,
21
(
1
), pp.
3
11
.10.1017/S0263574702004587
2.
Alias
,
N. A.
,
Huq
,
M. S.
,
Ibrahim
,
B.
, and
Omar
,
R.
,
2017
, “
The Efficacy of State of the Art Overground Gait Rehabilitation Robotics: A Bird's Eye View
,”
Procedia Comput. Sci.
,
105
, pp.
365
370
.10.1016/j.procs.2017.01.235
3.
Richter
,
H.
, and
Selvaraj
,
D.
,
2015
, “
Impedance Control With Energy Regeneration in Advanced Exercise Machines
,”
Proceedings of the ACC
, Chicago, IL, July 1–3, pp.
5890
5895
.10.1109/ACC.2015.7172263
4.
de las Casas
,
H.
,
Richter
,
H.
, and
van den Bogert
,
A. J.
,
2017
, “
Design and Hybrid Impedance Control of a Powered Rowing Machine
,” '
ASME
Paper No. DSCC2017-5243.10.1115/DSCC2017-5243
5.
Shultz
,
A. H.
,
Lawson
,
B. E.
, and
Goldfarb
,
M.
,
2014
, “
Running With a Powered Knee and Ankle Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
3
), pp.
1
412
.10.1109/TNSRE.2014.2336597
6.
Zhao
,
H.
,
Horn
,
J.
,
Reher
,
J.
,
Paredes
,
V.
, and
Ames
,
A. D.
,
2017
, “
First Steps Toward Translating Robotic Walking to Prostheses: A Nonlinear Optimization Based Control Approach
,”
Auton. Robots
,
41
(
3
), pp.
725
742
.10.1007/s10514-016-9565-1
7.
Martin
,
A. E.
, and
Gregg
,
R. D.
,
2017
, “
Stable, Robust Hybrid Zero Dynamics Control of Powered Lower-Limb Prostheses
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3930
3942
.10.1109/TAC.2017.2648040
8.
Eilenberg
,
M. F.
,
Geyer
,
H.
, and
Herr
,
H.
,
2010
, “
Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
2
), pp.
164
173
.10.1109/TNSRE.2009.2039620
9.
Helbostad
,
J. L.
,
Leirfall
,
S.
,
Moe-Nilssen
,
R.
, and
Sletvold
,
O.
,
2007
, “
Physical Fatigue Affects Gait Characteristics in Older Persons
,”
J. Gerontol. A Biol. Sci. Med. Sci.
,
62
(
9
), pp.
1010
1015
.10.1093/gerona/62.9.1010
10.
Huxley
,
H. E.
,
1957
, “
The Double Array of Filaments in Cross–Striated Muscle
,”
J. Biophys. Biochem. Cytol.
,
3
(
5
), pp.
631
648
.10.1083/jcb.3.5.631
11.
Yucesoy
,
C. A.
,
Koopman
,
B. H. F. J. M.
,
Huijing
,
P. A.
, and
Grootenboer
,
H. J.
,
2002
, “
Three-Dimensional Finite Element Modeling of Skeletal Muscle Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model
,”
ASME J. Biomech. Eng.
,
35
(
9
), pp.
1253
1262
.10.1016/S0021-9290(02)00069-6
12.
Winters
,
J. M.
,
1990
,
Hill-Based Muscle Models: A Systems Engineering Perspective
,
Springer
,
New York
, pp.
69
93
.
13.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
14.
van den Bogert
,
A. J.
,
Geijtenbeek
,
T.
,
Even-Zohar
,
O.
,
Steenbrink
,
F.
, and
Hardin
,
E. C.
,
2013
, “
A Real-Time System for Biomechanical Analysis of Human Movement and Muscle Function
,”
Med. Biol. Eng. Comput.
,
51
(
10
), pp.
1069
1077
.10.1007/s11517-013-1076-z
15.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
16.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2012
, “
Predictive Simulation of Gait at Low Gravity Reveals Skipping as the Preferred Locomotion Strategy
,”
J. Biomech.
,
45
(
7
), pp.
1293
1298
.10.1016/j.jbiomech.2012.01.029
17.
Towhidkhah
,
F.
,
Gander
,
R. E.
, and
Wood
,
H. C.
,
1997
, “
Model Predictive Impedance Control: A Model for Joint Movement
,”
J. Mot. Behav.
,
29
(
3
), pp.
209
222
.10.1080/00222899709600836
18.
Karimian
,
M.
,
Towhidkhah
,
F.
, and
Rostami
,
M.
,
2006
, “
Application of Model Predictive Impedance Control (MPIC) in Analysis of Human Walking on Rough Terrains
,”
Int. J. Appl. Electrom.
,
24
(
3–4
), pp.
147
162
.10.3233/JAE-2006-799
19.
Powell
,
M. J.
,
Cousineau
,
E. A.
, and
Ames
,
A. D.
,
2015
, “
Model Predictive Control of Underactuated Bipedal Robotic Walking
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
5121
5126
.10.1109/ICRA.2015.7139912
20.
Sun
,
J.
, and
Voglewede
,
P. A.
,
2014
, “
Dynamic Simulation of Human Gait Using a Combination of Model Predictive and PID Control
,”
ASME
Paper No. DETC2014-35582.10.1115/DETC2014-35582
21.
Sun
,
J.
,
2015
, “
Dynamic Modeling of Human Gait Using a Model Predictive Control Approach
,”
Ph.D. thesis
,
Marquette University
, Milwaukee, WI.https://epublications.marquette.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1481&context=dissertations_mu
22.
Wu
,
S.
, and
Voglewede
,
P. A.
,
2016
, “
Improvement of a Forward Dynamic MPC Based Human Gait Model
,”
ASME
Paper No. DETC2016-59429.10.1115/DETC2016-59429
23.
Grabke
,
E. P.
, and
Andrysek
,
J.
,
2018
, “
Applications of Musculoskeletal Modelling and Simulation for Lower-Limb Prosthesis Design Optimization
,”
ASME
Paper No. DETC2018-85957.10.1115/DETC2018-85957
24.
Powell
,
B. T.
,
2017
, “
Investigation of Extremum Seeking Control for Adaptive Exercise Machines
,”
Master's thesis
,
Cleveland State University
, Cleveland, OH.https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?article=2006&context=etdarchive
25.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
,
Ghannadi
,
B.
, and
McPhee
,
J.
,
2017
, “
Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control
,”
Front. Comput. Neurosc.
,
10
, p.
143
.10.3389/fncom.2016.00143
26.
Jagodnik
,
K. M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimization and Evaluation of a Proportional Derivative Controller for Planar Arm Movement
,”
J. Biomech.
,
43
(
6
), pp.
1086
1091
.10.1016/j.jbiomech.2009.12.017
27.
Yang
,
R.
, and
de Queiroz
,
M.
,
2016
, “
Adaptive Control of the Nonlinearly Parameterized Limb Dynamics With Application to Neuromuscular Electrical Stimulation
,”
American Control Conference
(
ACC
), Boston, MA, July 6–8, pp.
4883
4888
.10.1109/ACC.2016.7526126
28.
Karafyllis
,
I.
,
Malisoff
,
M.
,
de Queiroz
,
M.
,
Krstic
,
M.
, and
Yang
,
R.
,
2014
, “
A New Tracking Controller for Neuromuscular Electrical Stimulation Under Input Delays: Case Study in Prediction
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
4186
4191
.10.1109/ACC.2014.6859113
29.
Karafyllis
,
I.
,
Malisoff
,
M.
,
de Queiroz
,
M.
,
Krstic
,
M.
, and
Yang
,
R.
,
2015
, “
Predictor-Based Tracking for Neuromuscular Electrical Stimulation
,”
Int. J. Robust Nonlinear
,
25
(
14
), pp.
2391
2419
.10.1002/rnc.3211
30.
Thomas
,
P.
,
Branicky
,
M.
,
van den Bogert
,
A.
, and
Jagodnik
,
K.
,
2009
, “
Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm
,”
Proceedings of the IAAI
, Pasadena, CA, July 14–16, pp.
165
172
.https://www.researchgate.net/publication/45509034_Application_of_the_Actor-Critic_Architecture_to_Functional_Electrical_Stimulation_Control_of_a_Human_Arm
31.
Kotina
,
R.
,
Zheng
,
Q.
,
van den Bogert
,
A. J.
, and
Gao
,
Z.
,
2011
, “
Active Disturbance Rejection Control for Human Postural Sway
,”
American Control Conference
(
ACC
), San Francisco, CA, June 29–July 1, pp.
4081
4086
.10.1109/ACC.2011.5990973
32.
Koo
,
B.
, and
Leonessa
,
A.
,
2011
, “
An Adaptive Block Backstepping Control Design for Functional Electrical Stimulation of Agonist-Antagonist Muscles
,”
ASME
Paper No. DSCC2011-6143.10.1115/DSCC2011-6143
33.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans. Autom. Control
,
29
(
8
), pp.
681
690
.10.1109/TAC.1984.1103644
34.
Richter
,
H.
, and
Warner
,
H.
,
2017
, “
Stable Nonlinear Control of an Agonist-Antagonist Muscle-Driven System
,”
Proceedings of the IFAC
, Toulouse, France, July 9–14, 7199--7204.
35.
Warner
,
H.
,
Richter
,
H.
, and
van den Bogert
,
A.
,
2017
, “
Nonlinear Tracking Control of an Antagonistic Muscle Pair Actuated System
,”
ASME
Paper No. DSCC2017-5384.10.1115/DSCC2017-5384
36.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, 3rd ed.,
Wiley
,
New York
.
37.
McLean
,
S. G.
,
Su
,
A.
, and
van den Bogert
,
A. J.
,
2003
, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
864
874
.10.1115/1.1634282
38.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
39.
Katz
,
B.
,
1939
, “
The Relation Between Force and Speed in Muscular Contraction
,”
J. Physiol.
,
96
(
1
), pp.
45
64
.10.1113/jphysiol.1939.sp003756
40.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Autom. Control
,
36
(
3
), pp.
322
332
.10.1109/9.73565
41.
Andrews
,
G.
,
1985
, “
A General Method for Determining the Functional Role of a Muscle
,”
J. Biomed. Eng.
,
107
(
4
), pp.
348
353
.10.1115/1.3138568
42.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
,
1995
,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
43.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
44.
Chadwick, E., Blana
,
D.
, Kirsch, R., and van den Bogert, T.,
2007
, “Dynamic Arm Simulator: A Real-Time Model of the Upper Limb,” J. Biomech., 40, p. S65, Code accessed Oct. 27, 2018, https://simtk.org/svn/multidomain/MMS/mdl/arm2d/das1.bio
45.
Cooke
,
J. D.
, and
Brown
,
S. H.
,
1994
, “
Movement-Related Phasic Muscle Activation: III—The Duration of Phasic Agonist Activity Initiating Movement
,”
Exp. Brain Res.
,
99
(
3
), pp.
473
482
.10.1007/bf00228984
You do not currently have access to this content.