Abstract

A control framework and integrative design method for an adaptive wind turbine blade is presented. The blade is adapted by actively transforming the twist angle distribution (TAD) along the blade. This can alleviate fatigue loads and improve wind capture. In this paper, we focus on wind capture. The proposed design concept consists of a rigid spar that is surrounded by a series of flexible blade sections. Each section has two zones of stiffness. The sections are actuated at each end to deform the TAD. A quasi-static control technique is proposed for the TAD. The controller sets the position of the blade actuators that shape the TAD during steady-state operation. A design procedure is used to define the required TAD as a function of the wind speed. This is based on an optimization procedure that minimizes the deviation between the actual TAD and that found in the aerodynamic design. The design inputs for this optimization problem include the stiffness for each zone of the section, and the actuator locations along the blade. Given the optimal TAD at each wind speed, the free position of the blade is established using a dynamic programming technique. The position is selected based on minimal actuation energy according to wind conditions at any installation site. The proposed framework is demonstrated using a National Renewable Energy Laboratory (NREL) certified wind turbine model with recorded wind data. An increase in efficiency of 3.8% with only a deviation of 0.34% from the aerodynamic TAD is observed.

References

References
1.
Ponta
,
F. L.
,
Otero
,
A. D.
,
Rajan
,
A.
, and
Lago
,
L. I.
,
2014
, “
The Adaptive-Blade Concept in Wind-Power Applications
,”
Energy Sustainable Dev.
,
22
, pp.
3
12
.10.1016/j.esd.2014.04.004
2.
Petković
,
D.
,
Ćojbašić
,
Ž.
,
Nikolić
,
V.
,
Shamshirband
,
S.
,
Kiah
,
M. L. M.
,
Anuar
,
N. B.
, and
Wahab
,
A. W. A.
,
2014
, “
Adaptive Neuro-Fuzzy Maximal Power Extraction of Wind Turbine With Continuously Variable Transmission
,”
Energy
,
64
, pp.
868
874
.10.1016/j.energy.2013.10.094
3.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011016
.10.1115/1.4006882
4.
Jabbari Asl
,
H.
, and
Yoon
,
J.
,
2016
, “
Power Capture Optimization of Variable-Speed Wind Turbines Using an Output Feedback Controller
,”
Renewable Energy
,
86
, pp.
517
525
.10.1016/j.renene.2015.08.040
5.
Shaltout
,
M. L.
,
Hall
,
J. F.
, and
Chen
,
D.
,
2014
, “
Optimal Control of a Wind Turbine With a Variable Ratio Gearbox for Maximum Energy Capture and Prolonged Gear Life
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p. 031007.10.1115/1.4026676
6.
Nejadkhaki
,
H. K.
, and
Hall
,
J. F.
,
2018
, “
Modeling and Design Method for an Adaptive Wind Turbine Blade With Out-of-Plane Twist
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051010
.10.1115/1.4040104
7.
Mou
,
F.
,
Nejadkhaki
,
H. K.
,
Estes
,
A.
, and
Hall
,
J. F.
,
2019
, “
Weighted Least Squares Approach for an Adaptive Aerodynamic Engineered Structure With Twist Transformation
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051207
.10.1115/1.4042642
8.
Narayana
,
M.
,
Putrus
,
G.
,
Jovanovic
,
M.
,
Leung
,
P. S.
, and
McDonald
,
S.
,
2012
, “
Generic Maximum Power Point Tracking Controller for Small-Scale Wind Turbines
,”
Renewable Energy
,
44
, pp.
72
79
.10.1016/j.renene.2011.12.015
9.
Beltran
,
B.
,
El Hachemi Benbouzid
,
M.
, and
Ahmed-Ali
,
T.
,
2012
, “
Second-Order Sliding Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine
,”
Energy Convers.
,
27
(
2
), pp.
261
269
.10.1109/TEC.2011.2181515
10.
Eltamaly
,
A. M.
, and
Farh
,
H. M.
,
2013
, “
Maximum Power Extraction From Wind Energy System Based on Fuzzy Logic Control
,”
Electric Power Syst. Res.
,
97
, pp.
144
150
.10.1016/j.epsr.2013.01.001
11.
Kesraoui
,
M.
,
Korichi
,
N.
, and
Belkadi
,
A.
,
2011
, “
Maximum Power Point Tracker of Wind Energy Conversion System
,”
Renewable Energy
,
36
(
10
), pp.
2655
2662
.10.1016/j.renene.2010.04.028
12.
Li
,
S.
,
Wang
,
H.
,
Tian
,
Y.
, and
Aitouche
,
A.
,
2015
, “
A RBF Neural Network Based MPPT Method for Variable Speed Wind Turbine System
,”
IFAC-PapersOnLine
,
48
(
21
), pp.
244
250
.10.1016/j.ifacol.2015.09.535
13.
Yuan
,
Y.
,
Chen
,
X.
, and
Tang
,
J.
,
2017
, “
Disturbance Observer-Based Pitch Control of Wind Turbines for Enhanced Speed Regulation
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
7
), p.
071006
.10.1115/1.4035741
14.
Gao
,
R.
, and
Gao
,
Z.
,
2016
, “
Pitch Control for Wind Turbine Systems Using Optimization, Estimation and Compensation
,”
Renewable Energy
,
91
, pp.
501
515
.10.1016/j.renene.2016.01.057
15.
Civelek
,
Z.
,
Lüy
,
M.
,
Çam
,
E.
, and
Barışçı
,
N.
,
2016
, “
Control of Pitch Angle of Wind Turbine by Fuzzy PID Controller
,”
Intell. Autom. Soft Comput.
,
22
(
3
), pp.
463
471
.10.1080/10798587.2015.1095417
16.
Wang
,
N.
,
Wright
,
A. D.
, and
Balas
,
M. J.
,
2017
, “
Disturbance Accommodating Control Design for Wind Turbines Using Solvability Conditions
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
4
), p.
041007
.10.1115/1.4035097
17.
Semrau
,
G.
,
Rimkus
,
S.
, and
Das
,
T.
,
2015
, “
Nonlinear Systems Analysis and Control of Variable Speed Wind Turbines for Multiregime Operation
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
4
), p.
041007
.10.1115/1.4028775
18.
Civelek
,
Z.
,
Lüy
,
M.
,
Çam
,
E.
, and
Mamur
,
H.
,
2017
, “
A New Fuzzy Logic Proportional Controller Approach Applied to Individual Pitch Angle for Wind Turbine Load Mitigation
,”
Renewable Energy
,
111
, pp.
708
717
.10.1016/j.renene.2017.04.064
19.
Dahbi
,
A.
,
Nait-Said
,
N.
, and
Nait-Said
,
M.-S.
,
2016
, “
A Novel Combined MPPT-Pitch Angle Control for Wide Range Variable Speed Wind Turbine Based on Neural Network
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9427
9442
.10.1016/j.ijhydene.2016.03.105
20.
Njiri
,
J. G.
, and
Söffker
,
D.
,
2016
, “
State-of-the-Art in Wind Turbine Control: Trends and Challenges
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
377
393
.10.1016/j.rser.2016.01.110
21.
Corrêa
,
L. C.
,
Lenz
,
J. M.
,
Ribeiro
,
C. G.
, and
Farret
,
F. A.
,
2018
, “
Magnus Wind Turbine Emulator With MPPT by Cylinder Rotation Control
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
10
), p.
101012
.10.1115/1.4040212
22.
Ma
,
Z.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2015
, “
An Adaptive Wind Turbine Controller Considering Both the System Performance and Fatigue Loading
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
11
), p.
111007
.10.1115/1.4031045
23.
Gao
,
F.
,
2012
, “
Individual Pitch Control of Large-Scale Wind Turbine Based on Load Calculation
,”
10th World Congress on Intelligent Control and Automation
(
WCICA
), Beijing, China, July 6–8, pp.
3384
3388
.10.1109/WCICA.2012.6359032
24.
IEA Wind
,
2013
, “
Long-Term Research and Development Needs for Wind Energy for the Time Frame 2012 to 2030
,” IEA Wind, Olympia, WA.
25.
Bianchi
,
F. D.
,
Battista
,
H. D.
, and
Mantz
,
R. J.
,
2006
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer Science & Business Media
, London.
26.
Nejadkhaki
,
H. K.
,
Hall
,
J.
,
Zheng
,
F. M.
, and
Wu
,
T.
,
2018
, “
Integrative Modeling Platform for Design and Control of an Adaptive Wind Turbine Blade
,”
ASME
Paper No.
DSCC2018-9235.10.1115/DSCC2018-9235
27.
MacPhee
,
D. W.
, and
Beyene
,
A.
,
2019
, “Performance Analysis of a Small Wind Turbine Equipped With Flexible Blades,”
Renewable Energy
,
132
, pp.
497
508
.10.1016/j.renene.2018.08.014
28.
Van Dam
,
C.
,
Berg
,
D. E.
, and
Johnson
,
S. J.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2008-4809
.https://windpower.sandia.gov/other/084809.pdf
29.
Lobitz
,
D. W.
,
Veers
,
P. S.
,
Eisler
,
G. R.
,
Laino
,
D. J.
,
Migliore
,
P. G.
, and
Bir
,
G.
,
2001
, “
The Use of Twist-Coupled Blades to Enhance the Performance of Horizontal Axis Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2001-1003.
30.
Loth
,
E.
, Selig, M., and
Moriarty
,
P.
,
2010
, “
Morphing Segmented Wind Turbine Concept
,”
AIAA
Paper No. 2010-4400.
31.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.10.1002/we.531
32.
Gili
,
P.
, and
Frulla
,
G.
,
2016
, “
A Variable Twist Blade Concept for More Effective Wind Generation: Design and Realization
,”
Smart Sci.
,
4
(
2
), pp.
78
86
.10.1080/23080477.2016.1191002
33.
Wang
,
W.
,
Caro
,
S.
,
Bennis
,
F.
, and
Salinas Mejia
,
O. R.
,
2014
, “
A Simplified Morphing Blade for Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011018
.10.1115/1.4025970
34.
Runge
,
J.-B.
,
Osmont
,
D.
, and
Ohayon
,
R.
,
2013
, “
Twist Control of Aerodynamic Profiles by a Reactive Method (Experimental Results)
,”
J. Intell. Mater. Syst. Struct.
,
24
(
8
), pp.
908
923
.10.1177/1045389X12437884
35.
Molinari
,
G.
,
Quack
,
M.
,
Dmitriev
,
V.
,
Morari
,
M.
,
Jenny
,
P.
, and
Ermanni
,
P.
,
2011
, “
Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings
,”
J. Intell. Mater. Syst. Struct.
,
22
(
10
), pp.
1075
1089
.10.1177/1045389X11414089
36.
Jenett
,
B.
,
Calisch
,
S.
,
Cellucci
,
D.
,
Cramer
,
N.
,
Gershenfeld
,
N.
,
Swei
,
S.
, and
Cheung
,
K. C.
,
2017
, “
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
,”
Soft Rob.
,
4
(
1
), pp.
33
48
.10.1089/soro.2016.0032
37.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,”
National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/TP-500-29955.
38.
Nejadkhaki
,
H. K.
, and
Hall
,
J. F.
,
2017
, “
A Design Methodology for a Flexible Wind Turbine Blade With an Actively Variable Twist Distribution to Increase Region 2 Efficiency
,”
ASME
Paper No. DETC2017-68302.
10.1115/DETC2017-68302
39.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
Earthscan
, UK, p.
192
.
40.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
,
AeroDyn Theory Manual
,
National Renewable Energy Laboratory, Golden, CO.
41.
Nejadkhaki
,
H. K.
, and
Hall
,
J. F.
,
2017
, “A Flexible Wind Turbine Blade With an Actively Variable Twist Distribution to Increase Region 2 Efficiency: Design and Control,”
ASME
Paper No. DSCC2017-5282.10.1115/dscc2017-5282
42.
Lall
,
A.
,
Khakpour Nejadkhaki
,
H.
, and
Hall
,
J.
,
2016
, “
Design and Control Framework for Selecting Wind Turbine Gear Ratios Based on Optimal Power Generation and Blade Stress
,”
ASME
Paper No.
DSCC2016-9716.10.1115/DSCC2016-9716
43.
Brower
,
M.
,
2009
, “
Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008–March 31, 2010
,” National Renewable Energy Lab. (NREL), Golden, CO.
44.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 2: Control Design
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011017
.10.1115/1.4006886
45.
Dao
,
C.
,
Kazemtabrizi
,
B.
, and
Crabtree
,
C.
,
2019
, “
Wind Turbine Reliability Data Review and Impacts on Levelised Cost of Energy
,”
Wind Energy
,
22
(
12
), pp.
1848
1871
.10.1002/we.2404
You do not currently have access to this content.