Abstract

This paper proposes a new class of uniform continuous higher-order sliding mode algorithm (UCHOSMA) for the arbitrary relative degree systems. The proposed methodology is a combination of two controllers where one of the components is a uniform super-twisting control which acts as the disturbance compensator and the second part gives the uniform finite time convergence for the disturbance free system. This algorithm provides uniform finite time convergence of the output and its higher derivatives using an absolutely continuous control signal and thus alleviating the chattering phenomenon. The attractive feature of the proposed controller is that irrespective of the different initial conditions, the control is able to bring the states of the system to the equilibrium point uniformly in finite time. The effectiveness of the proposed controller has been demonstrated with both simulation and experimental results.

References

References
1.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
,
Control Engineering
,
Birkhäuser Boston-Springer, Cambridge, MA
.
2.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
(
6
), pp.
1247
1263
.10.1080/00207179308923053
3.
Moreno
,
J. A.
, and
Osorio
,
M.
,
2012
, “
Strict Lyapunov Functions for the Super-Twisting Algorithm
,”
IEEE Trans. Autom. Control
,
57
(
4
), pp.
1035
1040
.10.1109/TAC.2012.2186179
4.
Chalanga
,
A.
,
Kamal
,
S.
,
Fridman
,
L.
,
Bandyopadhyay
,
B.
, and
Moreno
,
J. A.
,
2016
, “
Implementation of Super-Twisting Control: Super Twisting and Higher Order Sliding Mode Observer Based Approaches
,”
IEEE Trans. Ind. Electron.
,
63
(
6
), pp.
3677
3685
.10.1109/TIE.2016.2523913
5.
Kamal
,
S.
,
Moreno
,
J. A.
,
Chalanga
,
A.
,
Bandyopadhyay
,
B.
, and
Fridman
,
L. M.
,
2016
, “
Continuous Terminal Sliding Mode Controller
,”
Automatica
,
69
, pp.
308
314
.10.1016/j.automatica.2016.02.001
6.
Galvan-Guerra
,
R.
,
Fridman
,
L. M.
,
Velazquez
,
J. E.
, and
Kamal
,
S.
,
2016
, “
Continuous Output Integral Sliding Mode Control for Switched Systems
,”
Nonlinear Anal.: Hybrid Syst.
,
22
, pp.
284
305
.10.1016/j.nahs.2016.05.007
7.
Fridman
,
L.
,
2012
, “
Sliding Mode Enforcement After 1990: Main Results and Some Open Problems
,”
Sliding Modes After the First Decade of the 21st Century
,
Springer
,
Berlin
, pp.
3
57
.
8.
Zuo
,
Z.
,
2015
, “
Nonsingular Fixed-Time Consensus Tracking for Second-Order Multiagent Networks
,”
Automatica
,
54
, pp.
305
309
.10.1016/j.automatica.2015.01.021
9.
Zuo
,
Z.
,
Han
,
Q. L.
,
Ning
,
B.
,
Ge
,
X.
, and
Zhang
,
X. M.
,
2018
, “
An Overview of Recent Advances in Fixed-Time Cooperative Control of Multiagent Systems
,”
IEEE Trans. Ind. Inf.
,
14
(
6
), pp.
2322
2334
.10.1109/TII.2018.2817248
10.
Hong
,
H.
,
Yu
,
W.
,
Wen
,
G.
, and
Yu
,
X.
,
2017
, “
Distributed Robust Fixed-Time Consensus for Nonlinear and Disturbed Multiagent Systems
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
7
), pp.
1464
1473
.10.1109/TSMC.2016.2623634
11.
Lu
,
W.
,
Liu
,
X.
, and
Chen
,
T.
,
2016
, “
A Note on Finite-Time and Fixed-Time Stability
,”
Neural Networks
,
81
, pp.
11
15
.10.1016/j.neunet.2016.04.011
12.
Wang
,
Y.
,
Song
,
Y.
,
Hill
,
D. J.
, and
Krstic
,
M.
,
2018
, “
Prescribed-Time Consensus and Containment Control of Networked Multiagent Systems
,”
IEEE Trans. Cybern.
,
99
, pp.
1
10
.10.1109/TCYB.2017.2788874
13.
Zhang
,
W.
,
Yang
,
X.
, and
Li
,
C.
,
2018
, “
Fixed-Time Stochastic Synchronization of Complex Networks Via Continuous Control
,”
IEEE Trans. Cybern.
,
99
, pp.
1
6
.10.1109/TCYB.2018.2839109
14.
Kamal
,
S.
,
Chalanga
,
A.
,
Moreno
,
J. A.
,
Fridman
,
L.
, and
Bandyopadhyay
,
B.
,
2014
, “
Higher Order Super-Twisting Algorithm
,”
13th IEEE Workshop on Variable Structure Systems
(
VVS
), Nantes, France, June 29–July 2, pp.
1
5
.10.1109/VSS.2014.6881129
15.
Chalanga
,
A.
,
Kamal
,
S.
, and
Bandyopadhyay
,
B.
,
2015
, “
A New Algorithm for Continuous Sliding Mode Control With Implementation to Industrial Emulator Setup
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2194
2204
.10.1109/TMECH.2014.2368717
16.
Chalanga
,
A.
,
Kamal
,
S.
, and
Bandyopadhyay
,
B.
,
2013
, “
Continuous Integral Sliding Mode Control: A Chattering Free Approach
,” 22th
IEEE
International Symposium on Industrial Electronics
, Taiwan, China, May 28–31, pp.
1
6
.10.1109/ISIE.2013.6563756
17.
Chalanga
,
A.
,
Kamal
,
S.
,
Fridman
,
L.
,
Bandyopadhyay
,
B.
, and
Moreno
,
J. A.
,
2014
, “
How to Implement Super-Twisting Controller Based on Sliding Mode Observer?
,”
13th IEEE Workshop on Variable Structure Systems
(
VVS
), Nantes, France, June 29–July 2, pp.
1
6
.10.1109/VSS.2014.6881145
18.
Angulo
,
M. T.
,
Moreno
,
J. A.
, and
Fridman
,
L.
,
2011
, “
An Exact and Uniformly Convergent Arbitrary Order Differentiator
,” 50th
IEEE
Conference on Decision and Control and European Control Conference
, Orlando, FL, Dec. 12–15, pp.
7629
7634
.10.1109/CDC.2011.6160926
19.
Cruz-Zavala
,
E.
,
Moreno
,
J.
, and
Fridman
,
L.
,
2011
, “
Uniform Robust Exact Differentiator
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2727
2733
.10.1109/TAC.2011.2160030
20.
Polyakov
,
A.
,
2012
, “
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems
,”
IEEE Trans. Autom. Control
,
57
(
8
), pp.
2106
2110
.10.1109/TAC.2011.2179869
21.
Levant
,
A.
,
2013
, “
On Fixed and Finite Time Stability in Sliding Mode Control
,”
52nd IEEE Conference on Decision Control
, Florence, Italy, Dec. 10–13, pp.
4260
4265
.
22.
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2016
, “
Robust Stabilization of MIMO Systems in Finite/Fixed Time
,”
Int. J. Robust Nonlinear Control
,
26
(
1
), pp.
69
90
.10.1002/rnc.3297
23.
Moreno
,
J. A.
,
2012
, “
Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms
,”
Sliding Modes After the First Decade of the 21st Century
,
Springer
,
Berlin
, pp.
113
149
.
24.
Filippov
,
A. F.
,
1988
,
Differential Equations and Discontinuous Right Hand Side
,
Kluwer
,
Dordrecht, The Netherlands
.
25.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2005
, “
Geometric Homogeneity With Applications to Finite-Time Stability
,”
Math. Control, Signals Syst.
,
17
(
2
), pp.
101
127
.10.1007/s00498-005-0151-x
26.
Vincent
,
A.
,
Praly
,
L.
, and
Astolfi
,
A.
,
2008
, “
Homogeneous Approximation, Recursive Observer Design, and Output Feedback
,”
SIAM J. Control Optim.
,
47
(
4
), pp.
1814
1850
.10.1137/060675861
27.
Xu
,
J.-X.
, and
Xu
,
J.
,
2004
, “
On Iterative Learning From Different Tracking Tasks in the Presence of Time Varying Uncertainties
,”
IEEE Trans. Syst., Man Cybern.
,
34
(
1
), pp.
589
597
.10.1109/TSMCB.2003.818433
28.
Kumar
,
E. V.
,
Raaja
,
G. S.
, and
Jerome
,
J.
,
2016
, “
Adaptive PSO for Optimal LQR Tracking Control of 2-DOF Laboratory Helicopter
,”
Appl. Soft Comput.
,
41
, pp.
77
90
.10.1016/j.asoc.2015.12.023
29.
Nuthi
,
P.
, and
Subbarao
,
K.
,
2015
, “
Experimental Verification of Linear and Adaptive Control Techniques for a Two Degrees-of-Freedom Helicopter
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
6
), p.
064501
.10.1115/1.4029273
30.
Quanser
,
2006
, “2-DOF Helicopter User and Control Manual,”
Quanser
,
Markham, ON, Canada
.
You do not currently have access to this content.