Abstract

In this paper, an approach based on a liquid state machine (LSM) to compute the movement profiles to achieve a gait pattern subject to different variations in its trajectory is presented. At the same time, the position of the zero moment point (ZMP) to determine the stability of the six degrees-of-freedom (6DOF) bipedal robot in the sagittal plane during the gait cycle is calculated. The system is constructed as a supervised machine learning model. The time series of the oscillating foot trajectory obtained by direct kinematics with a multilayer perceptron neural network (MLP), to strengthen the kinematic model, is considered as input values for training. The target movement profiles are acquired of a human gait cycle analysis in three different scenarios: normal gait, climbing stairs, and descending stairs. In training, this model also gets the trajectories of the ZMP position during the gait cycle, as target time series. The LSM formed by spiking neurons, considered as third-generation neural networks, is compared in the accuracy of prediction, by the dynamic time warping (DTW) technique and correlation analysis, against the human gait analysis database. With this neuronal system, the joint positions to generate a trajectory of the oscillating foot and the ZMP position of the bipedal in the sagittal plane in different scenarios are obtained, proving the robustness of the LSM.

References

1.
New York University
,
1986
,
Lower-Limb Orthotics
,
Prosthetics and Orthotics, New York University, Post-Graduate Medical
,
New York
.
2.
Denk
,
J.
, and
Schmidt
,
G.
,
2003
, “
Synthesis of Walking Primitive Databases for Biped Robots in 3d-Environments
,”
IEEE
International Conference on Robotics and Automation
, Taipei, TW, Sept. 14–19, pp.
1343
1349
.10.1109/ROBOT.2003.1241778
3.
Vaughan
,
C.
,
Davis
,
B.
, and
O'Connor
,
J.
,
1992
,
Dynamics of Human Gait
, Vol.
2
,
Human Kinetics Publishers
,
Champaing, IL
.
4.
Chevallereau
,
C.
,
Westervelt
,
E. R.
, and
Grizzle
,
J. W.
,
2005
, “
Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot
,”
Int. J. Rob. Res.
,
24
(
6
), pp.
431
464
.10.1177/0278364905054929
5.
Pratt
,
J.
,
Chew
,
C.-M.
,
Torres
,
A.
,
Dilworth
,
P.
, and
Pratt
,
G.
,
2001
, “
Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
,”
Int. J. Rob. Res.
,
20
(
2
), pp.
129
143
.10.1177/02783640122067309
6.
Pratt
,
J.
,
Dilworth
,
P.
, and
Pratt
,
G.
,
1997
, “
Virtual Model Control of a Bipedal Walking Robot
,”
International Conference on Robotics and Automation
, Alburquerque, NM, Apr. 20–25, pp.
193
198
.
7.
Chew
,
C.-M.
,
Pratt
,
J.
, and
Pratt
,
G.
,
1999
, “
Blind Walking of a Planar Bipedal Robot on Sloped Terrain
,”
IEEE
International Conference on Robotics and Automation
, Detroit, MI, May 10–15, pp.
381
386
.10.1109/ROBOT.1999.770008
8.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
9.
Collins
,
S.
,
Wisse
,
M.
, and
Ruina
,
A.
,
2001
, “
A Three-Dimensional Passive-Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Rob. Res.,
20
(
7
), pp.
607
615
.10.1177/02783640122067561
10.
Garcia
,
M.
,
Chatterjee
,
A.
, and
Ruina
,
A.
,
2000
, “
Efficiency, Speed, and Scaling of Two-Dimensional Passive-Dynamic Walking
,”
Dyn. Stab. Syst.
,
15
(
2
), pp.
75
99
.10.1080/713603737
11.
Aoi
,
S.
, and
Tsuchiya
,
K.
,
2005
, “
Locomotion Control of a Biped Robot Using Nonlinear Oscillators
,”
Auton. Robots
,
19
(
3
), pp.
219
232
.10.1007/s10514-005-4051-1
12.
Endo
,
G.
,
Nakanishi
,
J.
,
Morimoto
,
J.
, and
Cheng
,
G.
,
2005
, “
Experimental Studies of a Neural Oscillator for Biped Locomotion With Qrio
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, ES, Apr. 18–22, pp.
596
602
.10.1109/ROBOT.2005.1570183
13.
Héliot
,
R.
, and
Espiau
,
B.
,
2008
, “
Multisensor Input for CPG-Based Sensory—Motor Coordination
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
191
195
.10.1109/TRO.2008.915433
14.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
15.
Vukobratovic
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.10.1142/S0219843604000083
16.
Erbatur
,
K.
,
Okazaki
,
A.
,
Obiya
,
K.
,
Takahashi
,
T.
, and
Kawamura
,
A.
,
2002
, “
A Study on the Zero Moment Point Measurement for Biped Walking Robots
,”
Seventh International Workshop on Advanced Motion Control
, Maribor, SI, July 3–5 , pp.
431
436
. 10.1109/AMC.2002.1026959
17.
Kim
,
D.
,
Seo
,
S.
, and
Park
,
G.
,
2005
, “
Zero-Moment Point Trajectory Modelling of a Biped Walking Robot Using an Adaptive Neuro-Fuzzy System
,”
IEEE Proc. Control Theory Appl.
,
152
(
4
), pp.
411
426
.10.1049/ip-cta:20045007
18.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
IEEE
International Conference on Robotics and Automation, Taipei, TW, Sept. 14–19.10.1109/ROBOT.2003.1241826
19.
Gorce
,
P.
, and
Vanel
,
O.
,
1997
, “
Behaviour Synthesis of the Erect Stance for a Biped Control
,”
J. Intell. Rob. Syst.
,
18
(
2
), pp.
127
145
.10.1023/A:1007990219631
20.
Vukobratovic
,
M.
,
Borovac
,
B.
,
Surla
,
D.
, and
Stokic
,
D.
,
2012
, “
Biped Locomotion: Dynamics, Stability, Control and Application
,”
Communications and Control Engineering
,
Springer
,
Berlin
.
21.
Miller
,
W. T.
,
1994
, “
Real-Time Neural Network Control of a Biped Walking Robot
,”
IEEE Control Syst.
,
14
(
1
), pp.
41
48
.10.1109/37.257893
22.
Specht
,
D. F.
,
1990
, “
Probabilistic Neural Networks
,”
Neural Networks
,
3
(
1
), pp.
109
118
.10.1016/0893-6080(90)90049-Q
23.
Maass
,
W.
,
1997
, “
Networks of Spiking Neurons: The Third Generation of Neural Network Models
,”
Neural Networks
,
10
(
9
), pp.
1659
1671
.10.1016/S0893-6080(97)00011-7
24.
Ponulak
,
F.
, and
Kasinski
,
A.
,
2011
, “
Introduction to Spiking Neural Networks: Information Processing, Learning and Applications
,”
Acta Neurobiol. Exp.
,
71
(
4
), pp.
409
433
.
25.
Ghosh-Dastidar
,
S.
, and
Adeli
,
H.
,
2009
, “
Spiking Neural Networks
,”
Int. J. Neural Syst.
,
19
(
4
), pp.
295
308
.10.1142/S0129065709002002
26.
Jaeger
,
H.
,
2001
, “
The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks
,” GMD—German National Research Institute for Computer Science, Bonn, NRW, Report No. 148.
27.
Natschläger
,
T.
,
Maass
,
W.
, and
Markram
,
H.
,
2002
, “
The ‘Liquid Computer’: A Novel Strategy for Real-Time Computing on Time Series
,”
Spec. Issue Found. Inf. Process.TELEMATIK
,
8
(
1
), pp.
39
43
.
28.
Maass
,
W.
,
Natschläger
,
T.
, and
Markram
,
H.
,
2002
, “
Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations
,”
Int. J. Neural Syst.
,
14
(
11
), pp.
2531
2560
.10.1162/089976602760407955
29.
Legenstein
,
R.
,
Pecevski
,
D.
, and
Maass
,
W.
,
2008
, “
A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity With Application to Biofeedback
,”
PLoS Comput. Biol.
,
4
(
10
), pp.
e1000180
e1000127
.10.1371/journal.pcbi.1000180
30.
Izhikevich
,
E. M.
,
2004
, “
Which Model to Use for Cortical Spiking Neurons?
,”
IEEE Trans. Neural Networks
,
15
(
5
), pp.
1063
1070
.10.1109/TNN.2004.832719
31.
Loiselle
,
S.
,
Rouat
,
J.
,
Pressnitzer
,
D.
, and
Thorpe
,
S.
,
2005
, “
Exploration of Rank Order Coding With Spiking Neural Networks for Speech Recognition
,”
IEEE
International Joint Conference on Neural Networks
, Montreal, QC, Canada, July 31–Aug. 4, pp.
2076
2080
.10.1109/IJCNN.2005.1556220
32.
Chaturvedi
,
S.
,
Sondhiya
,
N. R.
, and
Titre
,
R. N.
,
2014
, “
Izhikevich Model Based Pattern Classifier for Hand Written Character Recognition—A Review Analysis
,”
International Conference on Electronic Systems, Signal Processing and Computing Technologies
, Nagpur, MH, Jan. 9-11, pp.
346
349
.10.1109/ICESC.2014.65
33.
Joshi
,
P.
, and
Maass
,
W.
,
2004
, “
Movement Generation and Control With Generic Neural Microcircuits
,”
Biologically Inspired Approaches to Advanced Information Technology
,
A. J.
Ijspeert
,
M.
Murata
, and
N.
Wakamiya
, eds.,
Springer
,
Berlin
, pp.
258
273
.
34.
De Azambuja
,
R.
,
Klein
,
F. B.
,
Stoelen
,
M. F.
,
Adams
,
S. V.
, and
Cangelosi
,
A.
,
2016
, “
Graceful Degradation Under Noise on Brain Inspired Robot Controllers
,”
Neural Information Processing
,
A.
Hirose
,
S.
Ozawa
,
K.
Doya
,
K.
Ikeda
,
M.
Lee
, and
D.
Liu
, eds.,
Springer International Publishing
,
Kyoto, Japan
, pp.
195
204
.
35.
De Azambuja
,
R.
,
Klein
,
F. B.
,
Adams
,
S. V.
,
Stoelen
,
M. F.
, and
Cangelosi
,
A.
,
2017
, “
Short-Term Plasticity in a Liquid State Machine Biomimetic Robot Arm Controller
,”
International Joint Conference on Neural Networks
(
IJCNN
), Anchorage, AK, May 14–19, pp.
3399
3408
.10.1109/IJCNN.2017.7966283
36.
Burgsteiner
,
H.
,
2005
, “
Training Networks of Biological Realistic Spiking Neurons for Real-Time Robot Control
,”
Ninth International Conference on Engineering Applications of Neural Networks
, Lille, France, Aug. 24–26, pp.
129
136
.
37.
Chen
,
M.
,
Saad
,
W.
, and
Yin
,
C.
,
2019
, “
Liquid State Machine Learning for Resource and Cache Management in LTE-U Unmanned Aerial Vehicle (UAV) Networks
,”
IEEE Trans. Wireless Commun.
,
18
(
3
), pp.
1504
1517
.10.1109/TWC.2019.2891629
38.
Wijesinghe
,
P.
,
Srinivasan
,
G.
,
Panda
,
P.
, and
Roy
,
K.
,
2019
, “
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
,”
Front. Neurosci.
,
13
, p.
504
.10.3389/fnins.2019.00504
39.
Jin
,
Y.
, and
Li
,
P.
,
2017
, “
Performance and Robustness of Bio-Inspired Digital Liquid State Machines: A Case Study of Speech Recognition
,”
Neurocomputing
,
226
, pp.
145
160
.10.1016/j.neucom.2016.11.045
40.
Polepalli, A
.,
Soures
,
N.
, and
Kudithipudi
,
D.
,
2016
, “
Reconfigurable Digital Design of a Liquid State Machine for Spatio-Temporal Data
,” Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication (NANOCOM'16),
ACM, New York
.
41.
Wang
,
Q.
, and
Li
,
P.
,
2016
, “
D-LSM: Deep Liquid State Machine With Unsupervised Recurrent Reservoir Tuning
,”
23rd International Conference on Pattern Recognition
(
ICPR
), Cancun, QR, Dec. 4–8, pp.
2652
2657
.10.1109/ICPR.2016.7900035
42.
Ganley
,
K. J.
, and
Powers
,
C. M.
,
2005
, “
Gait Kinematics and Kinetics of 7-Year-Old Children a Comparison to Adults Using Age-Specific Anthropometric Data
,”
Gait Posture
,
21
(
2
), pp.
141
145
.10.1016/j.gaitpost.2004.01.007
43.
Bovi
,
G.
,
Rabuffetti
,
M.
,
Mazzoleni
,
P.
, and
Ferrarin
,
M.
,
2011
, “
A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects
,”
Gait Posture
,
33
(
1
), pp.
6
13
.10.1016/j.gaitpost.2010.08.009
44.
Yang
,
H. H.
, and
Amari
,
S-I.
,
1998
, “
Complexity Issues in Natural Gradient Descent Method for Training Multilayer Perceptrons
,”
Neural Comput.
,
10
(
8
), pp.
2137
2157
.10.1162/089976698300017007
45.
Sugihara
,
T.
,
Nakamura
,
Y.
, and
Inoue
,
H.
,
2002
, “
Realtime Humanoid Motion Generation Through ZMP Manipulation Based on Inverted Pendulum Control
,” International Conference on Robotics and Automation, Washington, DC, May 11–15.
46.
Paugam-Moisy, H.,
and Bohte
,
S.
,
2012
, “
Computing With Spiking Neuron Networks
,”
Handbook of Natural Computing
, Vol.
21
, G. Rozenberg, T. Bäck, and J. N. Kok, eds., Berlin, pp.
335
376
.
47.
De Azambuja
,
R.
,
Cangelosi
,
A.
, and
Adams
,
S. V.
,
2016
, “
Diverse, Noisy and Parallel: A New Spiking Neural Network Approach for Humanoid Robot Control
,”
International Joint Conference on Neural Networks (IJCNN)
, Vancouver, BC, July 24–29, pp.
1134
1142
.
48.
Keogh
,
E. J.
, and
Pazzani
,
M. J.
,
2002
, “
Derivative Dynamic Time Warping
,”
SIAM International Conference on Data Mining
, Chicago, IL, Apr. 5–7, pp.
1
11
.
49.
Miller, S. ,
2018
, “
Simscape Multibody Contact Forces Library
,” MATLAB Central File Exchange, accessed Aug. 29, 2019, https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library
You do not currently have access to this content.