Abstract

A new hierarchical model predictive controller (HMPC) for autonomous vehicle steering control is presented. The controller generates a path of shortest distance by determining lateral coordinates on a longitudinal grid, while respecting road bounds. This path is then parameterized by arc length before being optimized to restrict the normal acceleration values along the trajectory's arc length. The optimized trajectory is then tracked using a nonlinear MPC scheme using a bicycle plant model to calculate an optimal steering angle for the tires. The proposed controller is evaluated in simulation during a double-lane-change maneuver, where it generates and tracks a reference trajectory while observing the road boundaries and acceleration limits. Its performance is compared to a controller without path optimization, along with another that uses a smooth, predetermined, reference path instead of creating its own initial reference. It is shown that the proposed controller improves the tracking compared to a controller without path optimization, with a four-times reduction in average lateral tracking error. The average lateral acceleration is also reduced by 6%. The controller also maintains the tracking performance of a controller that uses a smooth reference path, while showing a much greater flexibility due to its ability to create its own initial reference path rather than having to follow a predetermined trajectory.

References

References
1.
Gordon
,
T.
, and
Lidberg
,
M.
,
2015
, “
Automated Driving and Autonomous Functions on Road Vehicles
,”
Veh. Syst. Dyn.
,
53
(
7
), pp.
958
994
.10.1080/00423114.2015.1037774
2.
Huh
,
K.
, and
Kim
,
J.
,
2001
, “
Active Steering Control Based on the Estimated Tire Forces
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
3
), pp.
505
511
.10.1115/1.1387246
3.
Mokhiamar
,
O.
, and
Abe
,
M.
,
2004
, “
Simultaneous Optimal Distribution of Lateral and Longitudinal Tire Forces for the Model Following Control
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
753
763
.10.1115/1.1850533
4.
Cole
,
D. J.
,
Pick
,
A. J.
, and
Odhams
,
A. M. C.
,
2006
, “
Predictive and Linear Quadratic Methods for Potential Application to Modelling Driver Steering Control
,”
Veh. Syst. Dyn.
,
44
(
3
), pp.
259
284
.10.1080/00423110500260159
5.
Falcone
,
P.
,
Borrelli
,
F.
,
Asgari
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2007
, “
Predictive Active Steering Control for Autonomous Vehicle Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
566
580
.10.1109/TCST.2007.894653
6.
Hrovat
,
D.
,
Di Cairano
,
S.
,
Tseng
,
H.
, and
Kolmanovsky
,
I.
,
2012
, “
The Development of Model Predictive Control in Automotive Industry: A Survey
,”
IEEE International Conference on Control Technology and Applications
(
CCTA
), Dubrovnik, Croatia, Oct. 3–5, pp.
295
302
.10.1109/CCA.2012.6402735
7.
Li
,
H.
,
Shi
,
Y.
,
Yan
,
W.
, and
Liu
,
F.
,
2018
, “
Receding Horizon Consensus of General Linear Multi-Agent Systems With Input Constraints: An Inverse Optimality Approach
,”
Automatica
,
91
, pp.
10
16
.10.1016/j.automatica.2018.01.024
8.
Lars
,
G.
, and
Panne
,
2017
,
Nonlinear Model Predictive Control: Theory and Algorithms
,
2nd ed.
,
Communications and Control Engineering
,
Cham, Switzerland
.
9.
Allgöwer
,
F.
,
Findeisen
,
R.
, and
Nagy
,
Z. K.
,
2004
, “
Nonlinear Model Predictive Control: From Theory to Application
,”
J. Chin. Inst. Chem. Eng.
,
35
(
3
), pp.
299
315
.
10.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
.10.1109/TCST.2009.2017934
11.
Scattolini
,
R.
,
2009
, “
Architectures for Distributed and Hierarchical Model Predictive Control—A Review
,”
J. Process Control
,
19
(
5
), pp.
723
731
.10.1016/j.jprocont.2009.02.003
12.
Falcone
,
P.
,
Borrelli
,
F.
,
Tseng
,
H. E.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2008
, “
A Hierarchical Model Predictive Control Framework for Autonomous Ground Vehicles
,”
American Control Conference
, Seattle, WA, June 11–13, pp.
3719
3724
.10.1109/ACC.2008.4587072
13.
Chang
,
S.
, and
Gordon
,
T. J.
,
2008
, “
A Flexible Hierarchical Model-Based Control Methodology for Vehicle Active Safety Systems
,”
Veh. Syst. Dyn.
,
46
(
Suppl. 1
), pp.
63
75
.10.1080/00423110701882306
14.
Ranney
,
T. A.
,
1994
, “
Models of Driving Behavior: A Review of Their Evolution
,”
Accid. Anal. Prev.
,
26
(
6
), pp.
733
750
.10.1016/0001-4575(94)90051-5
15.
MacAdam
,
C. C.
,
2003
, “
Understanding and Modeling the Human Driver
,”
Veh. Syst. Dyn.
,
40
(
1–3
), pp.
101
134
.10.1076/vesd.40.1.101.15875
16.
Michon
,
J. A.
,
1976
, “
The Mutual Impacts of Transportation and Human Behaviour
,”
Transportation Planning for a Better Environment
,
P.
Stringer
, and
H.
Wenzel
, eds.,
Springer
,
Boston, MA
, pp.
221
235
.
17.
Michon
,
J. A.
,
1985
, “
A Critical View of Driver Behavior Models: What Do We Know, What Should We Do
?,”
Human Behavior and Traffic Safety
,
L.
Evans
, and
R. C.
Schwing
eds.,
Springer
,
Boston, MA
, pp.
485
520
.
18.
Joshi
,
A.
, and
James
,
M. R.
,
2015
, “
Generation of Accurate Lane-Level Maps From Coarse Prior Maps and Lidar
,”
IEEE Intell. Transp. Syst. Mag.
,
7
(
1
), pp.
19
29
.10.1109/MITS.2014.2364081
19.
Toledo-Moreo
,
R. R.
,
Bétaille
,
D.
, and
Peyret
,
F.
,
2010
, “
Lane Level Integrity Provision for Navigation and Map-Matching With GNSS, Dead-Reckoning and Enhanced Maps
,”
IEEE Trans. ITS
,
11
(
1
), pp.
100
112
.10.1109/TITS.2009.2031625
20.
MATLAB,
2019
, “
MATLAB R2019a
,” The MathWorks, Natick, MA.
21.
Pacejka
,
H.
,
2012
,
Tire and Vehicle Dynamics
,
3rd ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Chen
,
W.-H.
,
O'Reilly
,
J.
, and
Ballance
,
D. J.
,
2000
, “
Model Predictive Control of Nonlinear Systems: Computational Burden and Stability
,”
IEE Proc. Control Theory Appl.
,
147
(
4
), pp.
387
394
.10.1049/ip-cta:20000379
23.
Maciejowski
,
J. M.
,
2002
,
Predictive Control: With Constraints
,
Prentice Hall
,
London
.
24.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2009
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
25.
Lee
,
A. Y.
,
2002
, “
Coordinated Control of Steering and Anti-Roll Bars to Alter Vehicle Rollover Tendencies
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
127
132
.10.1115/1.1434982
You do not currently have access to this content.