The study of a continuous-time multivariable linear system may not need the knowledge of the entire internal state vector, but only of a linear function of it. In this case, instead of designing a complete observer, only a functional (also called reduced order) observer is used. In this field of research, this paper focuses on robust functional cooperative interval observers. Such an observer is proposed and its properties (in particular, its convergence) are established. Then, a design procedure is given for practical use. Finally, the theoretical contributions are illustrated in examples.

References

References
1.
Luenberger
,
D. G.
,
1964
, “
Observing the State of a Linear System
,”
IEEE Trans. Mil. Electron.
,
8
(
2
), pp.
74
80
.
2.
Luenberger
,
D.
,
1971
, “
An Introduction to Observers
,”
IEEE Trans. Autom. Control
,
16
(
6
), pp.
596
602
.
3.
Trinh
,
H.
, and
Fernando
,
T.
,
2011
,
Functional Observers for Dynamical Systems
, Vol.
420
,
Springer Science & Business Media
, Berlin.
4.
Tsui
,
C.-C.
,
1985
, “
A New Algorithm for the Design of Multifunctional Observers
,”
IEEE Trans. Autom. Control
,
30
(
1
), pp.
89
93
.
5.
Helmick
,
R. E.
,
Nagpal
,
K. M.
, and
Sims
,
C. S.
,
1987
, “
Reduced-Order Estimation—Part 1: Filtering
,”
Int. J. Control
,
45
(
6
), pp.
1867
1888
.
6.
Helmick
,
R. E.
,
Nagpal
,
K. M.
, and
Sims
,
C. S.
,
1987
, “
Reduced-Order Estimation—Part 2: Smoothing
,”
Int. J. Control
,
45
(
6
), pp.
1889
1898
.
7.
Trinh
,
H.
, and
Ha
,
Q.
,
2000
, “
Design of Linear Functional Observers for Linear Systems With Unknown Inputs
,”
Int. J. Syst. Sci.
,
31
(
6
), pp.
741
749
.
8.
Darouach
,
M.
,
2000
, “
Existence and Design of Functional Observers for Linear Systems
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
940
943
.
9.
Jaulin
,
L.
, and
Walter
,
E.
,
1993
, “
Set Inversion Via Interval Analysis for Nonlinear Bounded-Error Estimation
,”
Automatica
,
29
(
4
), pp.
1053
1064
.
10.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
E.
,
2001
,
Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics
, Springer-Verlag, London.
11.
Jaulin
,
L.
,
2002
, “
Nonlinear Bounded-Error State Estimation of Continuous Time Systems
,”
Automatica
,
38
(
6
), pp.
1079
1082
.
12.
Maksarov
,
D.
, and
Norton
,
J.
,
1996
, “
State Bounding With Ellipsoidal Set Description of the Uncertainty
,”
Int. J. Control
,
65
(
5
), pp.
847
866
.
13.
Liu
,
Y.
,
Zhao
,
Y.
, and
Wu
,
F.
,
2016
, “
Ellipsoidal State-Bounding-Based Set-Membership Estimation for Linear System With Unknown-But-Bounded Disturbances
,”
IET Control Theory Appl.
,
10
(
4
), pp.
431
442
.
14.
Alamo
,
T.
,
Bravo
,
J. M.
, and
Camacho
,
E. F.
,
2005
, “
Guaranteed State Estimation by Zonotopes
,”
Automatica
,
41
(
6
), pp.
1035
1043
.
15.
Wang
,
Y.
,
Wang
,
Z.
,
Puig
,
V.
, and
Cembrano
,
G.
,
2018
, “
Zonotopic Set-Membership State Estimation for Discrete-Time Descriptor LPV Systems
,”
IEEE Trans. Autom. Control
(epub).
16.
Efimov
,
D.
,
Perruquetti
,
W.
,
Raissi
,
T.
, and
Zolghadri
,
A.
,
2013
, “
On Interval Observer Design for Time-Invariant Discrete-Time Systems
,”
European Control Conference 2013
, Zurich, Switzerland, July, pp. 2651–2656.https://hal.inria.fr/hal-00801806/document
17.
Efimov
,
D.
,
Perruquetti
,
W.
,
Raissi
,
T.
, and
Zolghadri
,
A.
,
2013
, “
Interval Observers for Time-Varying Discrete-Time Systems
,”
IEEE Trans. Autom. Control
,
58
(12), pp. 3218–3224.
18.
Mazenc
,
F.
, and
Bernard
,
O.
,
2010
, “
Interval Observers for Linear Systems With Additive Disturbances
,”
IFAC Proc. Vol.
,
43
(
14
), pp.
30
35
.
19.
Meyer
,
L.
,
Ichalal
,
D.
, and
Vigneron
,
V.
,
2017
, “
Interval Observer for Lpv Systems With Unknown Inputs
,”
IET Control Theory Appl.
,
12
(5), pp. 649–660.
20.
Moisan
,
M.
, and
Bernard
,
O.
,
2010
, “
Robust Interval Observers for Global Lipschitz Uncertain Chaotic Systems
,”
Syst. Control Lett.
,
59
(
11
), pp.
687
694
.
21.
Meyer
,
L.
,
Ichalal
,
D.
, and
Vigneron
,
V.
,
2018
, “
Interval Observer for Nonlinear Lipschitz Systems With Unknown Inputs
,”
Annual American Control Conference
(
ACC
), Milwaukee, WI, June 27–29, pp.
5962
5967
.
22.
Meyer
,
L.
,
Ichalal
,
D.
, and
Vigneron
,
V.
,
2018
, “
Interval Observer for Bilinear Systems With Unknown Inputs
,”
Annual American Control Conference
(
ACC
), Milwaukee, WI, June 27–29, pp.
5957
5961
.
23.
Efimov
,
D.
,
Raissi
,
T.
,
Stanislav
,
C.
, and
Zolghadri
,
A.
,
2013
, “
Interval State Observer for Nonlinear Time Varying Systems
,”
Automatica
,
49
(
1
), pp.
200
205
.
24.
Smith
,
H.
,
1995
,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
(Mathematical Surveys and Monographs), Vol.
41
, American Mathematical Society,
Providence, RI
.
25.
Gouze
,
J.
,
Rapaport
,
A.
, and
Hadj-Sadok
,
M.
,
2000
, “
Interval Observers for Uncertain Biological Systems
,”
Ecol. Modell.
,
133
(
1–2
), pp.
45
56
.
26.
Efimov
,
D.
,
Fridman
,
L.
,
Raissi
,
T.
,
Zolghadri
,
A.
, and
Seydou
,
R.
,
2012
, “
Interval Estimation for LPV Systems Applying High Order Sliding Mode Techniques
,”
Automatica
,
48
(
9
), pp.
2365
2371
.
27.
Raïssi
,
T.
,
Efimov
,
D.
, and
Zolghadri
,
A.
,
2012
, “
Interval State Estimation for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
260
265
.
28.
Mazenc
,
F.
, and
Bernard
,
O.
,
2011
, “
Interval Observers for Linear Time-Invariant Systems With Disturbances
,”
Automatica
,
47
(
1
), pp.
140
147
.
29.
Chebotarev
,
S.
,
Efimov
,
D.
,
Raïssi
,
T.
, and
Zolghadri
,
A.
,
2015
, “
Interval Observers for Continuous-Time LPV Systems With l1/l2 Performance
,”
Automatica
,
58
, pp.
82
89
.
You do not currently have access to this content.