In this work, we establish a new estimate result for fractional differential inequality, and this inequality is used to derive a robust sliding mode control law for the fractional-order (FO) dynamic systems. The sliding mode control law is provided to make the states of the system asymptotically stable. Some examples are given to illustrate the results.

References

References
1.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies
, Vol.
204
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Baleanu
,
D.
,
Machado
,
J. A. T.
, and
Luo
,
A. C. J.
,
2011
,
Fractional Dynamics and Control
,
Springer Science & Business Media
, New York.
3.
Zhong
,
J.
, and
Li
,
L.
,
2015
, “
Tuning Fractional-Order Controllers for a Solid-Core Magnetic Nearing System
,”
IEEE Trans. Control Syst.
,
23
(
4
), pp.
1648
1656
.
4.
Aghababa
,
M. P.
,
2018
, “
Adaptive Switching Control of Uncertain Fractional Systems: Application to Chua's Circuit
,”
Int. J. Adaptive Control Signal Process.
,
32
(
8
), pp.
1206
1221
.
5.
Aghababa
,
M. P.
,
2017
, “
Stabilization of a Class of Fractional-Order Chaotic Systems Using a Non-Smooth Control Methodology
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1357
1370
.
6.
Aghababa
,
M. P.
,
2014
, “
A Lyapunov-Based Control Scheme for Robust Stabilization of Fractional Chaotic Systems
,”
Nonlinear Dyn.
,
78
(
3
), pp.
2129
2140
.
7.
Aghababa
,
M. P.
,
2014
, “
A Switching Fractional Calculus-Based Controller for Normal Non-Linear Dynamical Systems
,”
Nonlinear Dyn.
,
75
(
3
), pp.
577
588
.
8.
Al-Refai
,
M.
,
2012
, “
On the Fractional Derivatives at Extreme Points
,”
Electron. J. Qual. Theory Differ. Equations
,
2012
(
55
), pp.
1
5
.
9.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2012
, “
Fractional Terminal Sliding Mode Control Design for a Class of Dynamical Systems With Uncertainty
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
1
), pp.
367
377
.
10.
Duc
,
T. M.
,
Hoa
,
N. V.
, and
Thanh-Phong
,
D.
,
2018
, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031004
.
11.
Li
,
C.
, and
Deng
,
W.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math. Comput.
,
187
(
2
), pp.
777
784
.
12.
Liu
,
S.
,
Jiang
,
W.
,
Li
,
X.
, and
Zhou
,
X. F.
,
2016
, “
Lyapunov Stability Analysis of Fractional Nonlinear Systems
,”
Appl. Math. Lett.
,
51
, pp.
13
19
.
13.
Nojavanzadeh
,
D.
, and
Mohammadali
,
B.
,
2016
, “
Adaptive Fractional-Order Non-Singular Fast Terminal Sliding Mode Control for Robot Manipulators
,”
IET Control Theory Appl.
,
10
, pp.
1565
1572
.
14.
Norelys
,
A. C.
,
Manuel
,
A. D. M.
, and
Javier
,
A. G.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(9), pp.
2951
2957
.
15.
Rui-Hong
,
L.
, and
Wei-Sheng
,
C.
,
2013
, “
Complex Dynamical Behavior and Chaos Control in Fractional-Order Lorenz-Like Systems
,”
Chin. Phys. B
,
22
(4), p.
040503
.https://iopscience.iop.org/article/10.1088/1674-1056/22/4/040503/meta
16.
Ullah
,
N.
,
Songshan
,
H.
, and
Khattak
,
M. I.
,
2016
, “
Adaptive Fuzzy Fractional-Order Sliding Mode Controller for a Class of Dynamical Systems With Uncertainty
,”
Trans. Inst. Meas. Control
,
38
(
4
), pp.
402
413
.
17.
Utkin
,
V. I.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
18.
Wang
,
Y.
,
Luo
,
G.
,
Gu
,
L.
, and
Li
,
X.
,
2016
, “
Fractional-Order Nonsingular Terminal Sliding Mode Control of Hydraulic Manipulators Using Time Delay Estimation
,”
J. Vib. Control
,
22
(
19
), pp.
3998
4011
.
19.
Yu
,
S.
,
Xinghuo
,
Y.
,
Bijan
,
S.
, and
Zhihong
,
M.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
You do not currently have access to this content.