In this paper, we consider the optimal control problem for a class of systems governed by nonlinear time-varying partially observed interval differential equations. The control process is assumed to be governed by linear time varying interval differential equation driven by the observed process. Using the fact that the state, observation, and control processes possess lower and upper bounds, we have developed sets of (ordinary) differential equations that describe the behavior of the bounds of these processes. Using these differential equations, the interval control problem can be transformed into an equivalent ordinary control problem in which interval mathematics and extension principle of Moore are not required. Using variational arguments, we have developed the necessary conditions of optimality for the equivalent (ordinary) control problem. Finally, we present some numerical simulations to illustrate the effectiveness of the proposed control scheme.

References

References
1.
Gouzé
,
J. L.
,
Rapaport
,
A.
, and
Hadj-Sadok
,
Z. M.
,
2000
, “
Interval Observer for Uncertain Biological Systems
,”
Ecol. Modell.
,
133
, pp.
46
56
.
2.
Rapaport
,
A.
, and
Harmand
,
J.
,
2002
, “
Robust Regulation of a Class of Partially Observed Nonlinear Continuous Bioreactors
,”
J. Process Control
,
12
(2), pp.
291
302
.
3.
Raissi
,
T.
,
Efimov
,
D.
, and
Zolghadri
,
A.
,
2012
, “
Interval State Estimation for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
260
265
.
4.
Efimov
,
D.
,
Raissi
,
T.
, and
Zolghadri
,
A.
,
2013
, “
Control of Nonlinear and LPV Systems: Interval Observer-Based Framework
,”
IEEE Trans. Autom. Control
,
58
(
3
), pp.
773
778
.
5.
Dabbous
,
T.
,
2012
, “
Identification for Systems Governed by Nonlinear Interval Differential Equations
,”
Ind. Manage. Optim.
,
8
(
3
), pp.
765
780
.
6.
Abdallah
,
C.
, et al. .,
1995
, “
Controller Synthesis for a Class of Interval Plants
,”
Automatica
,
31
(
2
), pp.
341
343
.
7.
Raissi
,
T.
,
Videau
,
G.
, and
Zolghadri
,
A.
,
2010
, “
Interval Observal Design for Consistency Checks of Nonlinear Continuous Time Systems
,”
Automatica
,
46
(
3
), pp.
518
527
.
8.
Baras
,
J.
, and
Patel
,
N.
,
1998
, “
Robust Control of Set Valued Discrete Time Dynamical Systems
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
61
75
.
9.
Shamma
,
J.
, and
Xiong
,
D.
,
1999
, “
Set-Valued Methods for Linear Parameter Varying Systems
,”
Automatica
,
35
(
6
), pp.
1081
1089
.
10.
Datta
,
K.
, and
Bhattacharyya
,
S.
,
1996
, “
On a Quantitative Theory of Robust Adaptive Control: An Interval Plant Approach
,”
IEEE Trans. Autom. Control
,
41
(
4
), pp.
570
574
.
11.
Dabbous
,
T.
, and
Bayoumi
,
S.
,
2001
, “
Optimal Control for Partially Observed Nonlinear Deterministic Systems With Fuzzy Parameters Using Fuzzy Systems
,”
Dynam. Contr.
,
11
(4), pp. 353–370.
12.
Shao
,
Y.
, and
Zhang
,
Y.
,
2004
, “
Control of Multivariable Systems With Interval Parameters
,”
American Control Conference
, Boston, MA, June 30–July 2, pp.
3070
3074
.
13.
Zhang
,
Y.
, and
Kovacevic
,
R.
,
1997
, “
Robust Control of Interval Plants: A Time Domain Approach
,”
IEE Proc. Control Theory Appl.
,
144
(
4
), pp.
347
353
.
14.
Dabbous
,
T.
,
2017
, “
Adaptive Control of Linear Time-Varying Interval Systems
,”
ASME J. Dyn. Syst., Meas. Control
,
139
(
9
), p. 091006.
15.
Quang
,
L. T.
,
2014
, “
On the Solutions for Box Differential Equations Under Generalized Hukuhara Derivative
,”
Adv. Differ. Equ.
(epub).
16.
Ngo
,
V.
,
Truong
,
V.
, and
Nguyen
,
D.
,
2013
, “
Global Existence of Solutions for Interval Valued Integro-differential Equations Under Generalized H-Differentiability
,”
Adv. Differ. Equ.
(epub).
17.
Herms
,
H.
,
1971
, “
On Continuous and Measurable Selections and Existence of Solutions of Generalized Differential Equations
,”
Proc. Am. Math. Soc.
,
29
(
3
), pp. 535–542.https://www.ams.org/journals/proc/1971-029-03/S0002-9939-1971-0277794-3/S0002-9939-1971-0277794-3.pdf
18.
Ahmed
,
N. U.
,
1988
,
Elements of Finite Dimensional and Control Theory
,
Longman Scientific and Technical
,
New York
.
19.
Moore
,
R.
,
1979
, “
Methods and Application of Interval Analysis
,”
SIAM Studies in Applied Mathematics
, Vol.
2
,
Siam
,
Philadelphia, PA
.
20.
Oppenheimer
,
E.
, and
Michel
,
A.
,
1988
, “
Applications of Interval Analysis Techniques to Linear Systems—III: Initial Value Problem
,”
IEEE Trans. Circuits Syst.
,
35
(
10
), pp.
1243
1256
.
You do not currently have access to this content.