This paper studies control problems of underactuated mechanical systems with model uncertainties. The control is designed with the method of backstepping. The first-order low-pass filters are used to estimate the unknown quantities and to avoid the “explosion of terms.” A novel method is also proposed to implement the control without the knowledge of the control coefficient, which makes the whole process of backstepping control data-driven. The stability of the proposed control in the Lyapunov sense is studied. It is numerically and experimentally validated, and compared with the well-known model-based linear quadratic regulator (LQR) control. The data-driven backstepping control is found to provide comparable performances to that of the LQR control with the advantage of being model-free and robust.

References

References
1.
Fantoni
,
I.
, and
Lozano
,
R.
,
2002
,
Non-Linear Control for Underactuated Mechanical Systems
,
Springer-Verlag
,
London
.
2.
Lai
,
X. Z.
,
She
,
J. H.
, and
Wu
,
M.
,
2016
,
Control of Underactuated Mechanical Systems
,
Science Publishing
,
Beijing, China
.
3.
Rudra
,
S.
,
Barai
,
R. K.
, and
Maitra
,
M.
,
2017
,
Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems
,
Springer
,
Singapore
.
4.
Shah
,
I.
, and
Rehman
,
F. U.
,
2018
, “
Smooth Second Order Sliding Mode Control of a Class of Underactuated Mechanical Systems
,”
IEEE Access
,
6
, pp.
7759
7771
.
5.
Rudra
,
S.
,
Barai
,
R. K.
, and
Maitra
,
M.
,
2014
, “
Nonlinear State Feedback Controller Design for Underactuated Mechanical System: A Modified Block Backstepping Approach
,”
ISA Trans.
,
53
(
2
), pp.
317
326
.
6.
Wu
,
S.
, and
Huo
,
W.
,
2012
, “
Passivity-Based Tracking Control Design for Underactuated Mechanical Systems
,”
International Conference on Electronics, Communications and Control
, Zhoushan, China, pp.
3139
3143
.
7.
Tuan
,
L. A.
,
Lee
,
S.-G.
,
Nho
,
L. C.
, and
Cuong
,
H. M.
,
2015
, “
Robust Controls for Ship-Mounted Container Cranes With Viscoelastic Foundation and Flexible Hoisting Cable
,”
Proc. Inst. Mech. Eng., Part I
,
229
(
7
), pp.
662
674
.
8.
Tuan
,
L. A.
,
Cuong
,
H. M.
,
Lee
,
S.-G.
,
Nho
,
L. C.
, and
Moon
,
K.
,
2016
, “
Nonlinear Feedback Control of Container Crane Mounted on Elastic Foundation With the Flexibility of Suspended Cable
,”
J. Vib. Control
,
22
(
13
), pp.
3067
3078
.
9.
Le
,
A. T.
, and
Lee
,
S.-G.
,
2017
, “
3D Cooperative Control of Tower Cranes Using Robust Adaptive Techniques
,”
J. Franklin Inst.
,
354
(
18
), pp.
8333
8357
.
10.
Adhikary
,
N.
, and
Mahanta
,
C.
,
2013
, “
Integral Backstepping Sliding Mode Control for Underactuated Systems: Swing-Up and Stabilization of the Cart-Pendulum System
,”
ISA Trans.
,
52
(
6
), pp.
870
880
.
11.
Rudra
,
S.
,
Barai
,
R. K.
,
Maitra
,
M.
,
Mandal
,
D.
,
Dam
,
S.
,
Ghosh
,
S.
,
Bhattacharyya
,
P.
, and
Dutta
,
A.
,
2013
, “
Design of Nonlinear State Feedback Control Law for Underactuated TORA System: A Block Backstepping Approach
,” Seventh International Conference on Intelligent Systems and Control (
ISCO
), Coimbatore, India, Jan. 4–5, pp.
93
98
.
12.
Azimi
,
M. M.
, and
Koofigar
,
H. R.
,
2015
, “
Adaptive Fuzzy Backstepping Controller Design for Uncertain Underactuated Robotic Systems
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1457
1468
.
13.
Olfati-Saber
,
R.
,
2002
, “
Normal Forms for Underactuated Mechanical Systems With Symmetry
,”
IEEE Trans. Autom. Control
,
47
(
2
), pp.
305
308
.
14.
Thakar
,
P. S.
,
Bandyopadhyay
,
B.
, and
Gandhi
,
P. S.
,
2014
, “
Sliding Mode Control for a Class of Underactuated Systems Using Feedforward Normal Form: A Slosh-Container System
,”
13th International Workshop on Variable Structure Systems
(
VSS
), Nantes, France, June 29–July 2, pp.
1
6
.
15.
Ghommam
,
J.
, and
Chemori
,
A.
,
2017
, “
Adaptive RBFNN Finite-Time Control of Normal Forms for Underactuated Mechanical Systems
,”
Nonlinear Dyn.
,
90
(
1
), pp.
301
315
.
16.
Knoll
,
C.
, and
Röbenack
,
K.
,
2015
, “
Maneuver-Based Control of the 2-Degrees of Freedom Underactuated Manipulator in Normal Form Coordinates
,”
Syst. Sci. Control Eng.
,
3
(
1
), pp.
26
38
.
17.
Pan
,
Y.
,
Liu
,
Y.
, and
Yu
,
H.
,
2016
, “
Online Data-Driven Composite Adaptive Backstepping Control With Exact Differentiators
,”
Int. J. Adapt. Control Signal Process.
,
30
(
5
), pp.
779
789
.
18.
Nor
,
E. M.
,
Noor
,
S. B. M.
,
Zafira
,
R.
, and
Azrad
,
S.
,
2017
, “
Application of Sliding Mode Control With Extended High Gain Observer to Stabilize the Underactuated Quadrotor System
,”
Pertanika J. Sci. Technol.
,
25
(S), pp. 343–352.
19.
Dou
,
L.
, and
Fei
,
L.
,
2017
, “
Trajectory Tracking Control for Underactuated Quadrotor UAV Based on ESO and Backstepping
,”
J. Tianjin Univ.
,
50
(
5
), pp.
500
506
.
20.
Pan
,
Y.
,
Sun
,
T.
,
Liu
,
Y.
, and
Yu
,
H.
,
2017
, “
Composite Learning From Adaptive Backstepping Neural Network Control
,”
Neural Networks
,
95
, pp.
134
142
.
21.
Sun
,
J.
,
Xu
,
D.
,
Zha
,
S.
, and
Le
,
G.
,
2015
, “
Model Free Backstepping Control for Marine Power Systems
,”
Open Autom. Control Syst. J.
,
7
(
1
), pp.
942
948
.
22.
Younes
,
Y. A.
,
Drak
,
A.
,
Noura
,
H.
,
Rabhi
,
A.
, and
Hajjaji
,
A. E.
,
2014
, “
Nonlinear Integral Backstepping—Model-Free Control Applied to a Quadrotor System
,”
International Conference on Intelligent Unmanned Systems
, Montreal, QC, Canada, Sept. 29–Oct. 1, pp. 1–6.
23.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Yip
,
P. P.
, and
Gerdes
,
J. C.
,
2000
, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1893
1899
.
24.
Farrell
,
J. A.
,
Polycarpou
,
M.
,
Sharma
,
M.
, and
Dong
,
W.
,
2008
, “
Command Filtered Backstepping
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
1923
1928
.
You do not currently have access to this content.