Quadrotors have been used in many areas such as cargo transportation, agriculture, and search and rescue. The low energy density of power sources and the low energy efficiency of quadrotors have prevented quadrotors from a wider range of applications where a large payload has to be carried or long flight time is required. This paper optimizes the energy efficiency of a quadrotor via rotating its arms to proper positions calculated based on the dynamics model of the quadrotor and the power–thrust curve of rotors. The conditions that a quadrotor in steady-state can achieve the optimal energy efficiency are mathematically derived and the energy efficiency of a quadrotor in various scenarios is analyzed. Based on the analysis, an arm-rotation approach is proposed to optimize the energy efficiency of a quadrotor with a center-of-gravity offset in steady hovering. It is shown with simulation that an example quadrotor with rotatable arms can save up to 13% of energy. Experiments show that the same example quadrotor can save even more energy in practice, owing to the byproduct of the arm-rotation approach.

References

1.
Driessens
,
S.
, and
Pounds
,
P. E. I.
,
2013
, “
Towards a More Efficient Quadrotor Configuration
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
1386
1392
.
2.
Pounds
,
P.
,
Mahony
,
R.
, and
Corke
,
P.
,
2010
, “
Modelling and Control of a Large Quadrotor Robot
,”
Control Eng. Pract.
,
18
(
7
), pp.
691
699
.
3.
Pounds
,
P. E.
,
Mahony
,
R. E.
, and
Corke
,
P. I.
,
2009
, “
Design of a Static Thruster for Microair Vehicle Rotorcraft
,”
J. Aerosp. Eng.
,
22
(
1
), pp.
85
94
.
4.
Aleksandrov
,
D.
, and
Penkov
,
I.
,
2012
, “
Energy Consumption of Mini UAV Helicopters With Different Number of Rotors
,”
11th International Symposium Topical Problems in the Field of Electrical and Power Engineering
, Pränu, Estonia, Jan. 16–21, pp.
259
262
.
5.
Foehn
,
P.
,
Falanga
,
D.
,
Kuppuswamy
,
N.
,
Tedrake
,
R.
, and
Scaramuzza
,
D.
,
2017
, “
Fast Trajectory Optimization for Agile Quadrotor Maneuvers With a Cable-Suspended Payload
,”
Robotics: Science and Systems
, Cambridge, MA, July 12–16, pp.
1
10
.http://www.roboticsproceedings.org/rss13/p30.pdf
6.
Morbidi
,
F.
,
Cano
,
R.
, and
Lara
,
D.
,
2016
, “
Minimum-Energy Path Generation for a Quadrotor UAV
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Stockholm, Sweden, May 16–21, pp.
1492
1498
.
7.
Palunko
,
I.
,
Cruz
,
P.
, and
Fierro
,
R.
,
2012
, “
Agile Load Transportation: Safe and Efficient Load Manipulation With Aerial Robots
,”
IEEE Robot. Autom. Mag.
,
19
(
3
), pp.
69
79
.
8.
Miranda-Colorado
,
R.
,
Aguilar
,
L. T.
, and
Herrero-Brito
,
J. E.
,
2018
, “
Reduction of Power Consumption on Quadrotor Vehicles Via Trajectory Design and a Controller-Gains Tuning Stage
,”
Aerosp. Sci. Technol.
,
78
, pp.
280
296
.
9.
Yacef
,
F.
,
Rizoug
,
N.
,
Degaa
,
L.
,
Bouhali
,
O.
, and
Hamerlain
,
M.
,
2017
, “
Trajectory Optimisation for a Quadrotor Helicopter Considering Energy Consumption
,”
Fourth International Conference on Control, Decision and Information Technologies
(
CoDIT
), Barcelona, Spain, April 5–7, pp.
1030
1035
.
10.
Bouzid
,
Y.
,
Bestaoui
,
Y.
, and
Siguerdidjane
,
H.
,
2017
, “
Quadrotor-UAV Optimal Coverage Path Planning in Cluttered Environment With a Limited Onboard Energy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
979
984
.
11.
Kreciglowa
,
N.
,
Karydis
,
K.
, and
Kumar
,
V.
,
2017
, “
Energy Efficiency of Trajectory Generation Methods for Stop-and-Go Aerial Robot Navigation
,”
International Conference on Unmanned Aircraft Systems
(
ICUAS
), Miami, FL, June 13–16, pp.
656
662
.
12.
Bezzo
,
N.
,
Mohta
,
K.
,
Nowzari
,
C.
,
Lee
,
I.
,
Kumar
,
V.
, and
Pappas
,
G.
,
2016
, “
Online Planning for Energy-Efficient and Disturbance-Aware UAV Operations
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, Korea, Oct. 9–14, pp.
5027
5033
.
13.
David
,
T.
, and
Boris
,
L.
,
2014
, “
Cascaded Energy Based Trajectory Tracking Control of a Quadrotor
,”
At–Automatisierungstechnik
,
62
(6), p.
408
.
14.
Liu
,
Z.
,
Sengupta
,
R.
, and
Kurzhanskiy
,
A.
,
2017
, “
A Power Consumption Model for Multi-Rotor Small Unmanned Aircraft Systems
,”
International Conference on Unmanned Aircraft Systems
(
ICUAS
), Miami, FL, June 13–16, pp.
310
315
.
15.
Sumantri
,
B.
,
Uchiyama
,
N.
, and
Sano
,
S.
,
2017
, “
Generalized Super-Twisting Sliding Mode Control With a Nonlinear Sliding Surface for Robust and Energy-Efficient Controller of a Quad-Rotor Helicopter
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
11
), pp.
2042
2053
.
16.
Sumantri
,
B.
,
Uchiyama
,
N.
, and
Sano
,
S.
,
2016
, “
Least Square Based Sliding Mode Control for a Quad-Rotor Helicopter and Energy Saving by Chattering Reduction
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
769
784
.
17.
Guerrero-Sánchez
,
M. E.
,
Abaunza
,
H.
,
Castillo
,
P.
,
Lozano
,
R.
, and
García-Beltrán
,
C. D.
,
2017
, “
Quadrotor Energy-Based Control Laws: A Unit-Quaternion Approach
,”
J. Intell. Robot. Syst.
,
88
(
2–4
), pp.
347
377
.
18.
Guerrero
,
M. E.
,
Abaunza
,
H.
,
Castillo
,
P.
,
Lozano
,
R.
, and
García
,
C. D.
,
2016
, “
Energy Based Control for a Quadrotor Using Unit Quaternions
,”
International Conference on Unmanned Aircraft Systems
(
ICUAS
), Arlington, VA, June 7–10, pp.
144
151
.
19.
Gandolfo
,
D. C.
,
Salinas
,
L. R.
,
Serrano
,
M. E.
, and
Toibero
,
J. M.
,
2017
, “
Energy Evaluation of Low-Level Control in UAVs Powered by Lithium Polymer Battery
,”
ISA Trans.
,
71
(
Pt 2
), pp.
563
572
.
20.
Bouzid
,
Y.
,
Siguerdidjane
,
H.
, and
Bestaoui
,
Y.
,
2018
, “
Energy Based 3D Trajectory Tracking Control of Quadrotors With Model-Free Based on-Line Disturbance Compensation
,”
Chin. J. Aeronaut.
,
31
(
7
), pp.
1568
1578
.
21.
Gandolfo
,
D. C.
,
Salinas
,
L. R.
,
Brandão
,
A.
, and
Toibero
,
J. M.
,
2017
, “
Stable Path-Following Control for a Quadrotor Helicopter Considering Energy Consumption
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1423
1430
.
22.
Aleksandrov
,
D.
, and
Penkov
,
I.
,
2012
, “
Optimal Gap Distance Between Rotors of Mini Quadrotor Helicopter
,”
Eighth DAAAM Baltic Conference
, Tallinn, Estonia, April 19–21, pp.
251
255
.http://innomet.ttu.ee/daaam_publications/2012/Aleksandrov.pdf
23.
Penkov
,
I.
, and
Aleksandrov
,
D.
,
2017
, “
Analysis and Study of the Influence of the Geometrical Parameters of Mini Unmanned Quad-Rotor Helicopters to Optimise Energy Saving
,”
Int. J. Automot. Mech. Eng.
,
14
(
4
), pp.
4730
4746
.http://ijame.ump.edu.my/images/Volume%2014%20Issue%204%202017/11_penkov%20and%20aleksandrov.pdf
24.
Kamil
,
Y. M.
,
2017
, “
A New Model of Unmanned Aerial Vehicle Quadrotor Using the Variation in the Length of the Arm
,” International Conference on Artificial Life and Robotics (ICAROB), Miyazaki, Japan, Jan. 19–22, pp.
723
726
.
25.
Yasameen Kamil
,
N.
,
Hazry
,
D.
,
Wan
,
K.
, and
Razlan
,
Z. M.
,
2016
, “
A Novel VAL: Quadrotor Control Technique for Trajectory Tracking Based on Varying the Arm's Length
,”
ARPN J. Eng. Appl. Sci.
,
11
(
15
), pp.
9195
9204
.https://www.researchgate.net/publication/307568309_A_novel_VAL_Quadrotor_control_technique_for_trajectory_tracking_based_on_varying_the_Arm's_Length
26.
Sheng
,
S.
, and
Sun
,
C.
,
2016
, “
Control and Optimization of a Variable-Pitch Quadrotor With Minimum Power Consumption
,”
Energies
,
9
(
4
), p.
232
.
27.
Du Plessis
,
J.
, and
Pounds
,
P. E. I.
,
2014
, “
Rotor Flapping for a Triangular Quadrotor
,”
Australasian Conference on Robotics and Automation
(
ACRA
), Melbourne, Australia, Dec. 2–4, p. 144.http://www.araa.asn.au/acra/acra2014/papers/pap144.pdf
28.
Driessens
,
S.
, and
Pounds
,
P.
,
2015
, “
The Triangular Quadrotor: A More Efficient Quadrotor Configuration
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1517
1526
.
29.
Roberts
,
J. F.
,
Zufferey
,
J.-C.
, and
Floreano
,
D.
,
2008
, “
Energy Management for Indoor Hovering Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
1242
1247
.
30.
Leishman
,
G. J.
,
2006
,
Principles of Helicopter Aerodynamics With CD Extra
,
Cambridge University Press
, Cambridge, UK.
31.
Baklacioglu
,
T.
,
Aydin
,
H.
, and
Turan
,
O.
,
2016
, “
Energetic and Exergetic Efficiency Modeling of a Cargo Aircraft by a Topology Improving Neuro-Evolution Algorithm
,”
Energy
,
103
, pp.
630
645
.
32.
Lawrance
,
N. R. J.
, and
Sukkarieh
,
S.
,
2009
, “
Wind Energy Based Path Planning for a Small Gliding Unmanned Aerial Vehicle
,”
AIAA
Paper No. 2009-6112.
33.
Al-Sabban
,
W. H.
,
Gonzalez
,
L. F.
, and
Smith
,
R. N.
,
2013
, “
Wind-Energy Based Path Planning for Unmanned Aerial Vehicles Using Markov Decision Processes
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
784
789
.
34.
Kladis
,
G. P.
,
Economou
,
J. T.
,
Knowles
,
K.
,
Lauber
,
J.
, and
Guerra
,
T.-M.
,
2011
, “
Energy Conservation Based Fuzzy Tracking for Unmanned Aerial Vehicle Missions Under a Priori Known Wind Information
,”
Eng. Appl. Artif. Intell.
,
24
(
2
), pp.
278
294
.
35.
Şöhret
,
Y.
,
Dinç
,
A.
, and
Karakoç
,
T. H.
,
2015
, “
Exergy Analysis of a Turbofan Engine for an Unmanned Aerial Vehicle During a Surveillance Mission
,”
Energy
,
93
, pp.
716
729
.
36.
Sliwinski
,
J.
,
Gardi
,
A.
,
Marino
,
M.
, and
Sabatini
,
R.
,
2017
, “
Hybrid-Electric Propulsion Integration in Unmanned Aircraft
,”
Energy
,
140
, pp.
1407
1416
.
37.
Ma
,
S.
,
Wang
,
S.
,
Zhang
,
C.
, and
Zhang
,
S.
,
2017
, “
A Method to Improve the Efficiency of an Electric Aircraft Propulsion System
,”
Energy
,
140
, pp.
436
443
.
38.
Atlam
,
O.
, and
Kolhe
,
M.
,
2013
, “
Performance Evaluation of Directly Photovoltaic Powered DC PM (Direct Current Permanent Magnet) Motor–Propeller Thrust System
,”
Energy
,
57
, pp.
692
698
.
39.
Hoffmann
,
G. M.
,
Huang
,
H.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2007
, “
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment
,”
AIAA
Paper No. 2007-6461.
40.
Sharkh
,
S. M. A.
,
Lai
,
S. H.
, and
Turnock
,
S. R.
,
2004
, “
Structurally Integrated Brushless PM Motor for Miniature Propeller Thrusters
,”
IEE Proc. Elect. Power Appl.
,
151
(
5
), pp.
513
519
.
41.
Adkins
,
C. N.
, and
Liebeck
,
R. H.
,
1994
, “
Design of Optimum Propellers
,”
J. Propul. Power
,
10
(
5
), pp.
676
682
.
42.
Hardy
,
G. H.
,
Littlewood
,
J. E.
, and
Pólya
,
G.
,
1952
,
Inequalities
,
Cambridge University Press
, Cambridge, UK.
43.
Chovancová
,
A.
,
Fico
,
T.
,
Chovanec
,
Ľ.
, and
Hubinsk
,
P.
,
2014
, “
Mathematical Modelling and Parameter Identification of Quadrotor (A Survey)
,”
Procedia Eng.
,
96
, pp.
172
181
.
44.
Luukkonen
,
T.
,
2011
, “
Modelling and Control of Quadcopter
,” Independent Research Project in Applied Mathematics, Aalto University, Espoo, Finland,
Report
.http://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
45.
Bergamasco
,
M.
, and
Lovera
,
M.
,
2014
, “
Identification of Linear Models for the Dynamics of a Hovering Quadrotor
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1696
1707
.
46.
Derafa
,
L.
,
Madani
,
T.
, and
Benallegue
,
A.
,
2006
, “
Dynamic Modelling and Experimental Identification of Four Rotors Helicopter Parameters
,”
IEEE International Conference on Industrial Technology
(
ICIT
), Mumbai, India, Dec. 15–17, pp.
1834
1839
.
47.
Michael
,
N.
,
Mellinger
,
D.
,
Lindsey
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Grasp Multiple Micro-UAV Testbed
,”
IEEE Robot. Autom. Mag.
,
17
(
3
), pp.
56
65
.
48.
Amezquita-Brooks
,
L.
,
Liceaga-Castro
,
E.
,
Gonzalez-Sanchez
,
M.
,
Garcia-Salazar
,
O.
, and
Martinez-Vazquez
,
D.
,
2017
, “
Towards a Standard Design Model for Quad-Rotors: A Review of Current Models, Their Accuracy and a Novel Simplified Model
,”
Prog. Aerosp. Sci.
,
95
, p.
1
.
49.
Ding
,
X.
,
Wang
,
X.
,
Yu
,
Y.
, and
Zha
,
C.
,
2017
, “
Dynamics Modeling and Trajectory Tracking Control of a Quadrotor Unmanned Aerial Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
2
), p.
021004
.http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2553173
50.
Sanz
,
R.
,
Garcia
,
P.
,
Zhong
,
Q.-C.
, and
Albertos
,
P.
,
2016
, “
Robust Control of Quadrotors Based on an Uncertainty and Disturbance Estimator
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
7
), p.
071006
.
51.
Xu
,
Z.
,
He
,
F.
,
Xing
,
X.
,
Qi
,
H.
, and
Huo
,
X.
,
2017
, “
Modelling and Control of a Quadrotor Equipped With an Unbalanced Load
,”
11th Asian Control Conference
(
ASCC
), Gold Coast, Australia, Dec. 17–20, pp.
784
789
.
52.
Xian
,
B.
,
Zhao
,
B.
,
Zhang
,
Y.
, and
Zhang
,
X.
,
2017
, “
Nonlinear Control of a Quadrotor With Deviated Center of Gravity
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
1
), p.
011003
.http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2543315&resultClick=3
53.
Islam
,
S.
,
Liu
,
P. X.
, and
El Saddik
,
A.
,
2015
, “
Robust Control of Four-Rotor Unmanned Aerial Vehicle With Disturbance Uncertainty
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1563
1571
.
54.
Haus
,
T.
,
Orsag
,
M.
, and
Bogdan
,
S.
,
2017
, “
Mathematical Modelling and Control of an Unmanned Aerial Vehicle With Moving Mass Control Concept
,”
J. Intell. Robot. Syst.
,
88
(
2–4
), pp.
219
246
.
55.
Tayebi
,
A.
, and
McGilvray
,
S.
,
2006
, “
Attitude Stabilization of a VTOL Quadrotor Aircraft
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
562
571
.
56.
Basri
,
M. A. M.
,
Husain
,
A. R.
, and
Danapalasingam
,
K. A.
,
2015
, “
Enhanced Backstepping Controller Design With Application to Autonomous Quadrotor Unmanned Aerial Vehicle
,”
J. Intell. Robot. Syst.
,
79
(
2
), p.
295
.
57.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
IEEE Robot. Autom. Mag.
,
19
(
3
), pp.
20
32
.
58.
Napolitano
,
M. R.
,
2012
,
Aircraft Dynamics: From Modeling to Simulation
,
J. Wiley
, Hoboken, NJ.
59.
Stengel
,
R. F.
,
2015
,
Flight Dynamics
,
Princeton University Press
, Princeton, NJ.
60.
Beard
,
R. W.
, and
McLain
,
T. W.
,
2012
,
Small Unmanned Aircraft: Theory and Practice
,
Princeton University Press
, Princeton, NJ.
61.
Rinaldi
,
F.
,
Chiesa
,
S.
, and
Quagliotti
,
F.
,
2013
, “
Linear Quadratic Control for Quadrotors UAVs Dynamics and Formation Flight
,”
J. Intell. Robot. Syst.
,
70
(
1–4
), pp.
203
220
.
62.
Alaimo
,
A.
,
Artale
,
V.
,
Milazzo
,
C.
,
Ricciardello
,
A.
, and
Trefiletti
,
L.
,
2013
, “
Mathematical Modeling and Control of a Hexacopter
,”
International Conference on Unmanned Aircraft Systems (ICUAS)
, Atlanta, GA, May 28–31, pp.
1043
1050
.
63.
Barbaraci
,
G.
,
2015
, “
Modeling and Control of a Quadrotor With Variable Geometry Arms
,”
J. Unmanned Veh. Syst.
,
3
(
2
), pp.
35
57
.
64.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on SE (3) for Agile Maneuvers
,”
J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
091007
.
65.
Wallace
,
D. A.
,
2016
, “
Dynamics and Control of a Quadrotor With Active Geometric Morphing
,”
Master's thesis
, University of Washington, Seattle, WAhttps://digital.lib.washington.edu/researchworks/handle/1773/35518.
66.
Bai
,
Y.
,
2017
, “
Control and Simulation of Morphing Quadcopter
,”
Master's thesis
,
Saint Louis University
, St. Louis, MO.https://search.proquest.com/docview/2021984043?accountid=13360
67.
Avant
,
T.
,
Lee
,
U.
,
Katona
,
B.
, and
Morgansen
,
K.
,
2018
, “
Dynamics, Hover Configurations, and Rotor Failure Restabilization of a Morphing Quadrotor
,”
Annual American Control Conference
(
ACC
), Milwaukee, WI, June 27–29, pp.
4855
4862
.
68.
Birk
,
A.
,
Wiggerich
,
B.
,
Bülow
,
H.
,
Pfingsthorn
,
M.
, and
Schwertfeger
,
S.
,
2011
, “
Safety, Security, and Rescue Missions With an Unmanned Aerial Vehicle (UAV)
,”
J. Intell. Robot. Syst.
,
64
(
1
), pp.
57
76
.
69.
Rosen
,
A.
,
Ronen
,
T.
, and
Raz
,
R.
,
1989
, “
Active Aerodynamic Stabilization of a Helicopter/Sling-Load System
,”
J. Aircr.
,
26
(
9
), pp.
822
828
.
You do not currently have access to this content.