Various practical applications use filtered backstepping technique, which follows the same procedure as backstepping design but uses high gain filters to circumvent the analytical computation of derivatives. As a result, there exists a time-scale separation between the system dynamics and the fast filter dynamics. This paper proposes a new contraction theory-based technique to design a high gain disturbance observer-based filtered backstepping controller and to quantify the convergence bounds in terms of design parameters. The quantification of the bounds explicitly shows the dependency of the closed-loop performance on various parameters, which in turn provide more ways to tune the performance apart from reducing the magnitude of filter parameter. Unlike the existing results, the proposed approach relaxes the conservative restriction, required on the filter parameter to achieve a satisfactory closed loop performance. The efficacy of the proposed method is verified through simulation examples.

References

References
1.
Kanellakopoulos
,
I.
,
Kokotovic
,
P.
, and
Morse
,
A.
,
1992
, “
A Toolkit for Nonlinear Feedback Design
,”
Syst. Control Lett.
,
18
(
2
), pp.
83
92
.
2.
Zhao
,
J.
, and
Kanellakopoulos
,
I.
,
1998
, “
Flexible Backstepping Design for Tracking and Disturbance Attenuation
,”
Int. J. Robust Nonlinear Control
,
8
(
4–5
), pp.
331
348
.
3.
Jouffroy
,
J.
, and
Lottin
,
J.
,
2002
, “
Integrator Backstepping Using Contraction Theory: A Brief Technological Note
,”
15th IFAC World Congress
, Barcelona, Spain, July 21–26, pp.
238
244
.https://pdfs.semanticscholar.org/3a5a/cff51d289eb495ad2ec2956a10a309b3c034.pdf
4.
Zamani
,
M.
, and
Tabuada
,
P.
,
2011
, “
Backstepping Design for Incremental Stability
,”
IEEE Trans. Autom. Control
,
56
(
9
), pp.
2184
2189
.
5.
Swaroop
,
D.
,
Gerdes
,
J.
,
Yip
,
P.
, and
Hedrick
,
J.
,
2000
, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1893
1899
.
6.
Farrell
,
J.
,
Polycarpou
,
M.
,
Sharma
,
M.
, and
Dong
,
W.
,
2009
, “
Command Filtered Backstepping
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1391
1395
.
7.
Pan
,
Y.
, and
Yu
,
H.
,
2015
, “
Dynamic Surface Control Via Singular Perturbation Analysis
,”
Automatica
,
57
, pp.
29
33
.
8.
Song
,
B.
, and
Hedrick
,
J. K.
,
2004
, “
Observer-Based Dynamic Surface Control for a Class of Nonlinear Systems: An LMI Approach
,”
IEEE Trans. Autom. Control
,
49
(
11
), pp.
1995
2001
.
9.
Wu
,
J.
,
Huang
,
J.
,
Wang
,
Y.
, and
Xing
,
K.
,
2014
, “
Nonlinear Disturbance Observer-Based Dynamic Surface Control for Trajectory Tracking of Pneumatic Muscle System
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
440
455
.
10.
Gerdes
,
J. C.
, and
Hedrick
,
J. K.
,
2002
, “
Loop-at-a-Time Design of Dynamic Surface Controllers for Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
104
110
.
11.
Wang
,
D.
, and
Huang
,
J.
,
2005
, “
Neural Network-Based Adaptive Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in Strict-Feedback Form
,”
IEEE Trans. Neural Networks
,
16
(
1
), pp.
195
202
.
12.
Zhang
,
T.
, and
Ge
,
S.
,
2008
, “
Adaptive Dynamic Surface Control of Nonlinear Systems With Unknown Dead Zone in Pure Feedback Form
,”
Automatica
,
44
(
7
), pp.
1895
1903
.
13.
Mehraeen
,
S.
,
Jagannathan
,
S.
, and
Crow
,
M.
,
2011
, “
Power System Stabilization Using Adaptive Neural Network-Based Dynamic Surface Control
,”
IEEE Trans. Power Syst.
,
26
(
2
), pp.
669
680
.
14.
Zhou
,
L.
, and
Yin
,
L.
,
2014
, “
Dynamic Surface Control Based on Neural Network for an Air-Breathing Hypersonic Vehicle
,”
Optimal Control Appl. Methods
,
36
(
6
), pp.
774
793
.
15.
Huang
,
J.
,
Ri
,
S.
,
Liu
,
L.
,
Wang
,
Y.
,
Kim
,
J.
, and
Pak
,
G.
,
2015
, “
Nonlinear Disturbance Observer-Based Dynamic Surface Control of Mobile Wheeled Inverted Pendulum
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2400
2407
.
16.
Peimani
,
M.
,
Yazdanpanah
,
M. J.
, and
Khaji
,
N.
,
2016
, “
Adaptive Dynamic Surface Control of Bouc–Wen Hysteretic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
9
), p.
091007
.
17.
Won
,
D.
,
Kim
,
W.
,
Shin
,
D.
, and
Chung
,
C. C.
,
2015
, “
High-Gain Disturbance Observer-Based Backstepping Control With Output Tracking Error Constraint for Electro-Hydraulic Systems
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
787
795
.
18.
Lohmiller
,
W.
, and
Slotine
,
J.-J. E.
,
1998
, “
On Contraction Analysis for Non-Linear Systems
,”
Automatica
,
34
(
6
), pp.
683
696
.
19.
Angeli
,
D.
,
2002
, “
A Lyapunov Approach to Incremental Stability Properties
,”
IEEE Trans. Autom. Control
,
47
(
3
), pp.
410
421
.
20.
Forni
,
F.
, and
Sepulchre
,
R.
,
2014
, “
A Differential Lyapunov Framework for Contraction Analysis
,”
IEEE Tran. Autom. Control
,
59
(
3
), pp.
614
628
.
21.
Wang
,
W.
, and
Slotine
,
J.-J. E.
,
2005
, “
On Partial Contraction Analysis for Coupled Nonlinear Oscillators
,”
Biol. Cybern.
,
92
(
1
), pp.
38
53
.
22.
Jouffroy
,
J.
, and
Lottin
,
J.
,
2002
, “
On the Use of Contraction Theory for the Design of Nonlinear Observers for Ocean Vehicles
,”
American Control Conference
(
ACC
),
Anchorage, AK
,
May 8–10
, pp.
2647
2652
.
23.
Sharma
,
B. B.
, and
Kar
,
I. N.
,
2008
, “
Design of Asymptotically Convergent Frequency Estimator Using Contraction Theory
,”
IEEE Trans. Autom. Control
,
53
(
8
), pp.
1932
1937
.
24.
Del Vecchio
,
D.
, and
Slotine
,
J. J. E.
,
2013
, “
A Contraction Theory Approach to Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control
,
58
(
3
), pp.
752
757
.
25.
Rayguru
,
M. M.
, and
Kar
,
I. N.
,
2017
, “
Contraction-Based Stabilisation of Nonlinear Singularly Perturbed Systems and Application to High Gain Feedback
,”
Int. J. Control
,
90
(
8
), pp.
1778
1792
.
26.
Rayguru
,
M. M.
, and
Kar
,
I. N.
,
2018
, “
A Singular Perturbation Approach to Saturated Controller Design With Application to Bounded Stabilization of Wing Rock Phenomenon
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2263
2272
.
27.
Aylward
,
E. M.
,
Parrilo
,
P. A.
, and
Slotine
,
J. J. E.
,
2008
, “
Stability and Robustness Analysis of Nonlinear Systems Via Contraction Metrics and SOS Programming
,”
Automatica
,
44
(
8
), pp.
2163
2170
.
28.
Rayguru
,
M. M.
, and
Kar
,
I. N.
,
2015
, “
Contraction Based Stabilization of Approximate Feedback Linearizable Systems
,”
Europian Control Conference
(
ECC
),
Linz, Austria
,
July 15–17
, pp.
587
592
.
29.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
30.
Manchester
,
I. R.
, and
Slotine
,
J.-J. E.
,
2017
, “
Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design
,”
IEEE Trans. Autom. Control
,
62
(
6
), pp.
3046
3053
.
31.
Slotine
,
J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.