This paper presents a rigid multibody dynamic model to simulate the dynamic response of a spar floating offshore wind turbine (FOWT). The system consists of a spar floating platform, the moorings, the wind turbine tower, nacelle, and the rotor. The spar platform is modeled as a six degrees-of-freedom (6DOFs) rigid body subject to buoyancy, hydrodynamic and moorings loads. The wind turbine tower supports rigid nacelle and rotor at the tip. The rigid rotor is modeled as a disk spinning around its axis and subject to the aerodynamic load. The generator torque control law is incorporated into the system dynamics to capture the rotor spinning speed response when the turbine is operating below the rated wind speed. The equations of motions are derived using Lagrange's equation in terms of the platform quasi-coordinates and rotor spin speed. The external loads due to hydrostatics, hydrodynamics, and aerodynamics are formulated and incorporated into the equations of motion. The dynamic simulations of the spar FOWT are performed for three load cases to examine the system eigen frequencies, free decay response, and response to a combined wave and wind load. The results obtained from the present model are validated against their counterparts obtained from other simulation tools, namely, FAST, HAWC2, and Bladed, with excellent agreement. Finally, the influence of the rotor gyroscopic moment on the system dynamics is investigated.

References

1.
Jonkman
,
J.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines-Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.
2.
Musial
,
W.
,
Jonkman
,
J.
,
Sclavounos
,
P.
, and
Wayman
,
L.
,
2005
, “
Engineering Challenges for Floating Offshore Wind Turbines
,”
Copenhagen Offshore Wind 2005 Conference and Expedition Proceedings
, Copenhagen, Denmark, Oct. 26–28.https://www.osti.gov/biblio/917212-engineering-challenges-floating-offshore-wind-turbines
3.
Matha
,
D.
,
Schlipf
,
M.
,
Cordle
,
R.
,
Pereira
,
R.
, and
Jonkman
,
J.
,
2011
, “
Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines
,”
The 21st International Offshore and Polar Engineering Conference
, Maui, HI, June 19–24.https://www.nrel.gov/docs/fy12osti/50544.pdf
4.
Borg
,
M.
,
Collu
,
M.
, and
Kolios
,
A.
,
2014
, “
Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part II: Mooring Line and Structural Dynamics
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
1226
1234
.
5.
Matsukuma
,
H.
, and
Utsunomiya
,
T.
,
2008
, “
Motion Analysis of a Floating Offshore Wind Turbine Considering Rotor-Rotation
,”
IES J. Part A Civ. Struct. Eng.
,
1
(
4
), pp.
268
279
.
6.
Sandner
,
F.
,
Schlipf
,
D.
,
Matha
,
D.
,
Seifried
,
R.
, and
Cheng
,
P. W.
,
2012
, “
Reduced Nonlinear Model of a Spar-Mounted Floating Wind Turbine
,”
German Wind Energy Conference DEWEK
, Bremen, Germany, Nov. 7–8.https://www.semanticscholar.org/paper/REDUCED-NONLINEAR-MODEL-OF-A-SPAR-MOUNTED-FLOATING-Sandner-Schlipf/fc82c5e32d79047b8969853dd4202d902de0b127
7.
Sandner
,
F.
,
2012
, “
Reduced Model Design of a Floating Wind Turbine
,”
Master's thesis
, University of Stuttgart, Stuttgart, Germany.https://pdfs.semanticscholar.org/e8b8/b8a290622920dbb208ac28ebe15a54c0aa4c.pdf
8.
Jeon
,
S.
,
Cho
,
Y.
,
Seo
,
M.
,
Cho
,
J.
, and
Jeong
,
W.
,
2013
, “
Dynamic Response of Floating Substructure of Spar-Type Offshore Wind Turbine With Catenary Mooring Cables
,”
Ocean Eng.
,
72
, pp.
356
364
.
9.
Waris
,
M. B.
, and
Ishihara
,
T.
,
2012
, “
Dynamic Response Analysis of Floating Offshore Wind Turbine With Different Types of Heave Plates and Mooring Systems by Using a Fully Nonlinear Model
,”
Coupled Syst. Mech.
,
1
(
3
), pp.
247
268
.
10.
Homer
,
J. R.
, and
Nagamune
,
R.
,
2018
, “
Physics-Based 3-D Control-Oriented Modeling of Floating Wind Turbines
,”
IEEE Trans. Control Syst. Technol.
,
26
(
1
), pp.
14
26
.
11.
Homer
,
J. R.
, and
Nagamune
,
R.
,
2015
, “
Control-Oriented Physics-Based Models for Floating Offshore Wind Turbines
,”
American Control Conference
(
ACC
),
Chicago, IL
,
July 1–3
, pp.
3696
3701
.https://ieeexplore.ieee.org/document/7171904
12.
Luo
,
N.
,
Vidal
,
Y.
, and
Acho
,
L.
,
2014
,
Wind Turbine Control and Monitoring
,
Springer
,
Berlin
.
13.
Johnson
,
K.
,
Pao
,
L.
,
Balas
,
M.
, and
Fingersh
,
L.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
70
81
.
14.
Johnson
,
K. E.
,
2004
, “
Adaptive Torque Control of Variable Speed Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-36265
.https://www.nrel.gov/docs/fy04osti/36265.pdf
15.
Saha
,
S. K.
,
1999
, “
Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
986
996
.
16.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Passive Structural Control of Offshore Wind Turbines
,”
Wind Energy
,
14
(
3
), pp.
373
388
.
17.
Wang
,
L.
, and
Sweetman
,
B.
,
2013
, “
Multibody Dynamics of Floating Wind Turbines With Large-Amplitude Motion
,”
Appl. Ocean Res.
,
43
, pp.
1
10
.
18.
Tarn
,
T.
,
Shoults
,
G.
, and
Yang
,
S.
,
1996
, “
A Dynamic Model of an Underwater Vehicle With a Robotic Manipulator Using Kane's Method
,”
Underwater Rob.
,
3
(2–3), pp.
269
283
.
19.
Meirovitch
,
L.
, and
Stemple
,
T.
,
1995
, “
Hybrid Equations of Motion for Flexible Multibody Systems Using Quasicoordinates
,”
J. Guid. Control Dyn.
,
18
(
4
), pp.
678
688
.
20.
Meirovitch
,
L.
,
1991
, “
Hybrid State Equations of Motion for Flexible Bodies in Terms of Quasi-Coordinates
,”
J. Guid. Control Dyn.
,
14
(
5
), pp.
1008
1013
.
21.
Meirovitch
,
L.
, and
Tuzcu
,
I.
,
2003
, “
Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/CR-2003-211748
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030062109.pdf
22.
Haghighat
,
S.
,
Martins
,
J.
, and
Liu
,
H.
,
2012
, “
Aeroservoelastic Design Optimization of a Flexible Wing
,”
J. Aircr.
,
49
(
2
), pp.
432
443
.
23.
Jonkman
,
J. M.
,
2001
, “
Modeling of the UAE Wind Turbine for Refinement of FAST_AD
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-34755
.https://www.nrel.gov/docs/fy04osti/34755.pdf
24.
Wilson
,
B.
,
Walker
,
S.
, and
Heh
,
P.
,
2000
, “
FAST_AD Advanced Dynamics Code
,” Oregon State University, Corvallis, OR, Report No. OSU/NREL REPORT 99-01.
25.
Larsen
,
T. J.
, and
Hansen
,
A. M.
,
2015
, “
How 2 HAWC2, the User's Manual
,” Roskilde, Denmark, Report No. Risø-R-1597.
26.
Bossanyi
,
E. A.
,
2006
, GH Bladed Theory Manual, 282/BR/009, Garrad-Hassan, Brighton, UK.
27.
Larsen
,
J.
, and
Nielsen
,
S.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Nonlinear Mech.
,
41
(
5
), pp.
629
643
.
28.
Jonkman
,
J. M.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-47535
.https://www.nrel.gov/docs/fy10osti/47535.pdf
29.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
30.
Vorpahl
,
F.
,
Strobel
,
M.
,
Jonkman
,
J. M.
,
Larsen
,
T. J.
,
Passon
,
P.
, and
Nichols
,
J.
,
2014
, “
Verification of Aero-Elastic Offshore Wind Turbine Design Codes Under IEA Wind Task XXIII
,”
Wind Energy
,
17
(
4
), pp.
519
547
.
31.
Jonkman
,
J. M.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5000-48191
.https://www.nrel.gov/docs/fy11osti/48191.pdf
32.
Baruh
,
H.
,
1999
,
Analytical Dynamics
,
WCB/McGraw-Hill
,
Boston, MA
.
33.
Fossen
,
T.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
,
New York
.
34.
SNAME Hydrodynamics Subcommittee,
1950
, “
Nomenclature for Treating the Motion of a Submerged Body Through a Fluid
,”
American Towing Tank Conference
, New York.https://books.google.co.in/books/about/Nomenclature_for_Treating_the_Motion_of.html?id=VqNFGwAACAAJ&redir_esc=y
35.
Al-Solihat
,
M.
, and
Nahon
,
M.
,
2015
, “
Nonlinear Hydrostatic Restoring of Floating Platforms
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p. 041005.http://computationalnonlinear.asmedigitalcollection.asme.org/article.aspx?articleid=1874785
36.
Sarpkaya
,
T.
, and
Isaacson
,
M.
,
1981
,
Mechanics of Wave Forces on Offshore Structures
,
Van Nostrand Reinhold
,
New York
.
37.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand Reinhold
,
New York
.
38.
DNV
,
2007
, “
Environmental Conditions and Environmental Loads
,” Recommended Practice, Det Norske Veritas, Oslo, Norway, Report No. DNV-RP-C205.
39.
Gavassoni
,
E.
,
Gonçalves
,
P.
, and
Roehl
,
D.
,
2014
, “
Nonlinear Vibration Modes and Instability of a Conceptual Model of a Spar Platform
,”
Nonlinear Dyn.
,
76
(
1
), pp.
809
826
.
40.
Nallayarasu
,
S.
, and
Bairathi
,
K.
,
2014
, “
Hydrodynamic Response of Spar Hulls With Heave Damping Plate Using Simplified Approach
,”
Ships Offshore Struct.
,
9
(
4
), pp.
418
432
.
41.
NREL's National Wind Technology Center
,
2012
, “
NREL 5-MW Reference Turbine—CP, CQ, CT Coefficients
,”
National Renewable Energy Laboratory
, Golden, CO, accessed May 10, 2015. https://wind.nrel.gov/forum/wind/viewtopic.php?f=2&t=582
42.
Isaacson
,
M.
, and
Baldwin
,
J.
,
1996
, “
Moored Structures in Waves and Currents
,”
Can. J. Civ. Eng.
,
23
(
2
), pp.
418
430
.
43.
Al-Solihat
,
M.
, and
Nahon
,
M.
,
2018
, “
Flexible Multibody Dynamic Modeling of a Floating Wind Turbine
,”
Int. J. Mech. Sci.
,
142–143
, pp.
518
529
.
44.
Al-Solihat
,
M. K.
, and
Nahon
,
M.
,
2016
, “
Stiffness of Slack and Taut Moorings
,”
Ships Offshore Struct.
,
11
(
8
), pp.
890
904
.
45.
MATLAB
,
2017
, “Version 9.3.0 (R2017b),”
The MathWorks
,
Natick, MA
.
46.
Cordle
,
A.
, and
Jonkman
,
J.
,
2011
, “
State of the Art in Floating Wind Turbine Design Tools
,”
21st International Offshore and Polar Engineering Conference
, Maui, HI, June 19–24.https://www.nrel.gov/docs/fy12osti/50543.pdf
You do not currently have access to this content.