This paper deals with the robust stabilization of a class of linear parameter varying (LPV) systems in the sampled data control case. Instead of using a state observer or searching for a dynamic output feedback, the considered controller is based on output derivatives estimation. This allows the stabilization of the plant with very large parameter variations or uncertainties. The proof of stability is based on the polytopic representation of the closed-loop under Lyapunov conditions and system transformations. The result is a control structure with only one parameter tuned via very simple conditions. Finally, the effectiveness of the proposed method is verified via a numerical example of a second-order LPV system.

References

References
1.
Åström
,
K.
, and
ägglund
,
T. H.
,
2006
,
Advanced PID Control
,
The Instrumentation, Systems, and Automation Society
,
Research Triangle Park
,
NC
, p.
27709
.
2.
Khodabakhshian
,
A.
, and
Edrisi
,
M.
,
2008
, “
A New Robust {PID} Load Frequency Controller
,”
Control Eng. Pract.
,
16
(
9
), pp.
1069
1080
.
3.
Huang
,
D.
, and
Nguang
,
S. K.
,
2007
, “
Static Output Feedback Controller Design for Fuzzy Systems: An ILMI Approach
,”
Inf. Sci.
,
177
(
14
), pp.
3005
3015
.
4.
Mansouri
,
B.
,
Manamanni
,
N.
,
Guelton
,
K.
,
Kruszewski
,
A.
, and
Guerra
,
T. M.
,
2009
, “
Output Feedback LMI Tracking Control Conditions With h∞; Criterion for Uncertain and Disturbed T–S Models
,”
Inf. Sci.
,
179
(
4
), pp.
446
457
.
5.
Sato
,
M.
,
2011
, “
Gain-Scheduled Output-Feedback Controllers Depending Solely on Scheduling Parameters Via Parameter-Dependent Lyapunov Functions
,”
Automatica
,
12
, pp.
2786
2790
.
6.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H.
,
1998
, “
Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs
,”
IEEE Trans. Fuzzy Syst.
,
6
(
2
), pp.
250
265
.
7.
Sala
,
A.
,
Guerra
,
T. M.
, and
Babuška
,
R.
,
2005
, “
Perspectives of Fuzzy Systems and Control
,”
Fuzzy Sets Syst.
,
156
(
3
), pp.
432
444
.
8.
Join
,
C.
,
Masse
,
J.
, and
Fliess
,
M.
,
2008
, “
Etude Préliminaire D'une Commande Sans Modèle Pour Papillon de Moteur—A Model-Free Control for an Engine Throttle: A Preliminary Study
,”
J. Eur. Syst. Automatisés
,
42
(
2–3
), pp.
337
354
.
9.
Abouaissa
,
H.
,
Fliess
,
M.
,
Iordanova
,
V.
, and
Join
,
C.
,
2011
, “
First Steps Towards a Model-Free Control of a Freeway Traffic Flow—Prolégomènes à Une Régulation Sans Modèle du Trafic Autoroutier
,”
Conférence Méditerranée Sur L'Ingénierie Sûre Des Systèmes Complexes
,
Agadir, Maroc
, May
10.
Gédouin
,
P.
,
Delaleau
,
E.
,
Bourgeot
,
J.
,
Join
,
C.
,
Arbab-Chirani
,
S.
, and
Calloch
,
S.
,
2011
, “
Experimental Comparison of Classical PID and Model-Free Control: Position Control of a Shape Memory Alloy Active Spring
,”
Control Eng. Pract.
,
19
(
5
), pp.
433
441
.
11.
D'Andréa-Novel
,
B.
,
Boussard
,
C.
,
Fliess
,
M.
,
El Hamzaoui
,
O.
,
Mounier
,
H.
, and
Steux
,
B.
,
2010
, “
Commande Sans Modèle de la Vitesse Longitudinale D'un Véhicule Électrique
,”
Sixième Conférence Internationale Francophone D'Automatique
,
Nancy, France
, June.
12.
Maalej
,
S.
,
Kruszewski
,
A.
, and
Belkoura
,
L.
,
2013
, “
Derivative Based Control for LTV System With Unknown Parameters
,”
European Control Conference
(
ECC
),
Zurich, Switzerland
,
July 17–19
.
13.
Maalej
,
S.
,
Kruszewski
,
A.
, and
Belkoura
,
L.
,
2016
, “
Robust Control for Continuous LPV System With Restricted-Model-Based Control
,”
Circuits, Systems, and Signal Processing
,
Springer
,
New York
.
14.
Maalej
,
S.
,
Kruszewski
,
A.
,
Delpoux
,
R.
, and
Belkoura
,
L.
,
2014
, “
Derivative Based Control for LPV System With Unknown Parameters: An Application on a Permanent Magnet Synchronous Motors
,”
International Multi-Conference on Systems
,
Barcelona, Spain
,
Feb. 11–14
, pp.
1
6
.
15.
Harchay
,
M.
,
Louhichi
,
B.
,
Maalej
,
S.
, and
Smaoui
,
M.
,
2015
, “
On the Model-Free Control of an Electropneumatic System
,”
International Conference on Sciences and Techniques of Automatic Control and Computer Engineering
,
Monastir, Tunisie
,
Dec. 21–23
, pp.
14
18
.
16.
Åström
,
K.
, and
Wittenmark
,
B.
,
1984
,
Computer Controlled Systems: Theory and Design
,
Prentice Hall
,
Upper Saddle River
,
NJ
.
17.
Fridman
,
E.
,
Seuret
,
A.
, and
Richard
,
J.-P.
,
2004
, “
Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach
,”
Automatica
,
40
(
8
), pp.
1441
1446
.
18.
Fridman
,
E.
,
2010
, “
A Refined Input Delay Approach to Sampled-Data Control
,”
Automatica
,
46
(
2
), pp.
421
427
.
19.
Seuret
,
A.
,
2009
, “
Stability Analysis for Sampled-Data Systems With a Time-Varying Period
,”
48th IEEE Conference on Decision and Control
(
CDC
),
Shanghai, China
,
Dec. 15–18
, pp.
8130
8135
.
20.
Hetel
,
L.
,
Kruszewski
,
A.
,
Perruquetti
,
W.
, and
Richard
,
J. P.
,
2011
, “
Discrete and Intersample Analysis of Systems With Aperiodic Sampling
,”
IEEE Trans. Autom. Control
,
56
(
7
), pp.
1696
1701
.
21.
Fiter
,
C.
,
Hetel
,
L.
,
Perruquetti
,
W.
, and
Richard
,
J.-P.
,
2012
, “
A State Dependent Sampling for Linear State Feedback
,”
Automatica
,
48
(
8
), pp.
1860
1867
.
22.
Hecker
,
S.
, and
Varga
,
A.
,
2004
, “
Generalized LFT-Based Representation of Parametric Uncertain Models
,”
Eur. J. Control
,
10
(
4
), pp.
326
337
.
23.
Marcos
,
A.
, and
Balas
,
J.
,
2004
, “
Development of Linear-Parameter-Varying Models for Aircraft
,”
J. Guid., Control, Dyn.
,
27
(
2
), pp.
218
228
.
24.
Tan
,
W.
,
1997
, “
Applications of Linear Parameter-Varying Control Theory
,” Ph.D. thesis, University of California at Berkeley, Berkeley, CA.
25.
Kawamoto
,
S.
,
Tada
,
K.
,
Ishigame
,
A.
, and
Taniguchi
,
T.
,
1992
, “
An Approach to Stability Analysis of Second Order Fuzzy Systems
,”
IEEE
International Conference on Fuzzy Systems
,
San Diego, CA
,
Mar. 8–12
, pp.
1427
1434
.
26.
Tanaka
,
K.
,
Hori
,
T.
, and
Wang
,
H.
,
2001
, “
A Fuzzy Lyapunov Approach to Fuzzy Control System Design
,”
American Control Conference
(
ACC
),
Arlington, VA
,
June 25–27
, pp.
4790
4795
.
27.
Mboup
,
M.
,
2009
, “
Parameter Estimation for Signals Described by Differential Equations
,”
Appl. Anal.
,
88
(
1
), pp.
29
52
.
28.
Slotine
,
J.
,
1984
, “
Sliding Controller Design for Non-Linear Systems
,”
Int. J. Control
,
40
(
2
), pp.
421
434
.
29.
Nounou
,
M. N.
,
Nounou
,
H. N.
, and
Mahmoud
,
M. S.
,
2006
, “
Robust Adaptive Sliding-Mode Control for Continuous Time-Delay Systems
,”
IMA J. Math. Control Inf.
,
24
(
3
), pp.
299
313
.
30.
Yan
,
S.
, and
Sun
,
Z.
,
2010
, “
Study on Separation Principles for T–S Fuzzy System With Switching Controller and Switching Observer
,”
Neurocomputing
,
73
(
13–15
), pp.
2431
2438
.
31.
Feng
,
Y.
, and
Wang
,
L.
,
2010
, “
Terminal Sliding Mode Observer Based Parameter Estimation Method for Permanent Magnet Synchronous Motor Control System
,”
11th International Workshop on Variable Structure Systems
(
VSS
),
Mexico City, Mexico
,
June 26–28
, pp.
184
189
.
32.
Fridman
,
E.
,
Micheev
,
Y.
, and
Sobolev
,
V.
,
1988
, “
Asymptotic Analysis of Digital Control Systems
,”
Autom. Remote Control
,
49
, pp.
1175
1180
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=6755&option_lang=eng
33.
Åström
,
K.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison-Wesley
,
Boston, MA
.
34.
Fridman
,
E.
,
1992
, “
Use of Models With Aftereffect in the Problem of Design of Optimal Digital Control
,”
Autom. Remote Control
,
53
(
10
), pp.
1523
1528
.
35.
Boukas
,
E.
,
2008
, “
Free-Weighting Matrices Delay-Dependent Stabilization for Systems With Time-Varying Delays
,”
ICIC Express Lett.
,
2
(
2
), pp.
167
173
.
36.
Fliess
,
M.
, and
Join
,
C.
,
2013
, “
Model-Free Control
,”
Int. J. Control
,
86
(
12
), pp.
2228
2252
.
37.
Sturm
,
J. F.
,
1999
, “
Using Sedumi 1.02, a Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
,
11
(
1–4
), pp.
625
653
.
38.
Lofberg
,
J.
,
2004
, “
Yalmip: A Toolbox for Modeling and Optimization in Matlab
,”
IEEE
International Symposium on Computer Aided Control Systems Design
,
New Orleans, LA
,
Sept. 2–4
, pp.
284
289
.
You do not currently have access to this content.