The effectiveness of a network's response to external stimuli depends on rapid distortion-free information transfer across the network. However, the rate of information transfer, when each agent aligns with information from its network neighbors, is limited by the update rate at which each individual can sense and process information. Moreover, such neighbor-based, diffusion-type information transfer does not predict the superfluid-like information transfer during swarming maneuvers observed in nature. The main contribution of this paper is to propose a novel model that uses self-reinforcement, where each individual augments its neighbor-averaged information update using its previous update to (i) increase the information-transfer rate without requiring an increased, individual update-rate and (ii) enable superfluid-like information transfer. Simulations results of example systems show substantial improvement, more than an order of magnitude increase, in the information transfer rate, without the need to increase the update rate. Moreover, the results show that the delayed self-reinforcement (DSR) approach's ability to enable superfluid-like, distortion-free information transfer results in maneuvers with smaller turn radius and improved cohesiveness. Such faster response rate with limited individual update rate can enable better understanding of cohesiveness of flocking in nature, as well as improve the performance of engineered swarms such as unmanned mobile systems.

References

References
1.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A. S.
,
2003
, “
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
988
1001
.
2.
Hedrick
,
J. K.
,
Basso
,
B.
,
Love
,
J.
, and
Lavis
,
B. M.
,
2011
, “
Tools and Techniques for Mobile Sensor Network Control
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
2
), p.
024001
.
3.
Huth
,
A.
, and
Wissel
,
C.
,
1992
, “
The Simulation of the Movement of Fish Schools
,”
J. Theor. Biol.
,
156
(
3
), pp.
365
385
.
4.
Vicsek
,
T.
,
Czirók
,
A.
,
Ben-Jacob
,
E.
,
Cohen
,
I.
, and
Shochet
,
O.
,
1995
, “
Novel Type of Phase Transition in a System of Self-Driven Particles
,”
Phys. Rev. Lett.
,
75
(
6
), pp.
1226
1229
.
5.
Couzin
,
I.
,
Krause
,
J.
,
James
,
R.
,
Ruxton
,
G.
, and
Franks
,
N.
,
2002
, “
Collective Memory and Spatial Sorting in Animal Groups
,”
J. Theor. Biol.
,
218
(
1
), pp.
1
11
.
6.
Ren
,
W.
, and
Beard
,
R. W.
,
2005
, “
Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
655
661
.
7.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Autom. Control
,
51
(
3
), pp.
401
420
.
8.
Bialek
,
W.
,
Cavagna
,
A.
,
Giardina
,
I.
,
Mora
,
T.
,
Silvestri
,
E.
,
Viale
,
M.
, and
Walczak
,
A. M.
,
2012
, “
Statistical Mechanics for Natural Flocks of Birds
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
13
), pp.
4786
4791
.
9.
Attanasi
,
A.
,
Cavagna
,
A.
,
Castello
,
L. D.
,
Giardina
,
I.
,
Grigera
,
T.
,
Jelic
,
A.
,
Melillo
,
S.
,
Parisi
,
L.
,
Pohl
,
O.
,
Shen
,
E.
, and
Viale
,
M.
,
2014
, “
Information Transfer and Behavioural Inertia in Starling Flocks
,”
Nat. Phys.
,
10
(
9
), pp.
615
698
.
10.
DeLellis
,
P.
,
Porfiri
,
M.
, and
Bollt
,
E. M.
,
2013
, “
Topological Analysis of Group Fragmentation in Multiagent Systems
,”
Phys. Rev. E
,
87
(
2
), p.
022818
.
11.
Jahromi
,
H. T.
, and
Haeri
,
M.
,
2013
, “
On Exponential Flocking to the Virtual Leader in Network of Agents With Double-Integrator Dynamics
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
3
), p.
034504
.
12.
Boyd
,
S.
,
Diaconis
,
P.
, and
Xiao
,
L.
,
2004
, “
Fastest Mixing Markov Chain on a Graph
,”
SIAM Rev.
,
46
(
4
), pp.
667
689
.
13.
Wang
,
J.
, and
Xin
,
M.
,
2013
, “
Flocking of Multi-Agent Systems Using a Unified Optimal Control Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
6
), p.
061005
.
14.
Carli
,
R.
,
Fagnani
,
F.
,
Speranzon
,
A.
, and
Zampieri
,
S.
,
2008
, “
Communication Constraints in the Average Consensus Problem
,”
Automatica
,
44
(
3
), pp.
671
684
.
15.
Atrianfar
,
H.
, and
Haeri
,
M.
,
2013
, “
Theoretical Analysis of Flocking Algorithms in Networks of Second Order Dynamic Agents With Switching Topologies
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
1
), p.
011013
.
16.
Fanti
,
M. P.
,
Mangini
,
A. M.
,
Mazzia
,
F.
, and
Ukovich
,
W.
,
2015
, “
A New Class of Consensus Protocols for Agent Networks With Discrete Time Dynamics
,”
Automatica
,
54
, pp.
1
7
.
17.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Internal Representations by Error Propagation
,”
Parallel Distributed Processing
, Vol.
1
,
D. E.
Rumelhart
and
J. L.
McClelland
, eds.,
MIT Press
,
Cambridge, MA
, pp.
318
362
.
18.
Qian
,
N.
,
1999
, “
On the Momentum Term in Gradient Descent Learning Algorithms
,”
Neural Networks
,
12
(
1
), pp.
145
151
.
19.
Dohner
,
J.
,
Eisler
,
G.
,
Driessen
,
B.
, and
Hurtado
,
J.
,
2004
, “
Cooperative Control of Vehicle Swarms for Acoustic Target Localization by Energy Flows
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
891
895
.
20.
Halloy
,
J.
,
Sempo
,
G.
,
Caprari
,
G.
,
Rivault
,
C.
,
Asadpour
,
M.
,
Tache
,
F.
,
Said
,
I.
,
Durier
,
V.
,
Canonge
,
S.
,
Ame
,
J. M.
,
Detrain
,
C.
,
Correll
,
N.
,
Martinoli
,
A.
,
Mondada
,
F.
,
Siegwart
,
R.
, and
Deneubourg
,
J. L.
,
2007
, “
Social Integration of Robots Into Groups of Cockroaches to Control Self-Organized Choices
,”
Science
,
318
(
5853
), pp.
155
1158
.
21.
Rubenstein
,
M.
,
Cornejo
,
A.
, and
Nagpal
,
R.
,
2014
, “
Programmable Self-Assembly in a Thousand-Robot Swarm
,”
Science
,
345
(
6198
), pp.
795
799
.
22.
Olfati-Saber
,
R.
,
Fax
,
J.
, and
Murray
,
R.
,
2007
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
(
1
), pp.
215
233
.
23.
Xi
,
J.
,
Shi
,
Z.
, and
Zhong
,
Y.
,
2012
, “
Consensus and Consensualization of High-Order Swarm Systems With Time Delays and External Disturbances
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
4
), p.
041011
.
24.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2015
, “
Swarm Motion as Particles of a Continuum With Communication Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111008
.
25.
Zhao
,
B.
,
Lin
,
F.
,
Wang
,
C.
,
Zhang
,
X.
,
Polis
,
M. P.
, and
Wang
,
L. Y.
,
2017
, “
Supervisory Control of Networked Timed Discrete Event Systems and Its Applications to Power Distribution Networks
,”
IEEE Trans. Control Network Syst.
,
4
(
2
), pp.
146
158
.
26.
Xu
,
L.
,
Xiao
,
N.
, and
Xie
,
L.
,
2016
, “
Consensusability of Discrete-Time Linear Multi-Agent Systems Over Analog Fading Networks
,”
Automatica
,
71
, pp.
292
299
.
27.
Meskin
,
N.
, and
Khorasani
,
K.
,
2009
, “
Fault Detection and Isolation of Discrete-Time Markovian Jump Linear Systems With Application to a Network of Multi-Agent Systems Having Imperfect Communication Channels
,”
Automatica
,
45
(
9
), pp.
2032
2040
.
28.
Nagarajan
,
H.
,
Rathinam
,
S.
, and
Darbha
,
S.
,
2015
, “
Synthesizing Robust Communication Networks for Unmanned Aerial Vehicles With Resource Constraints
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
6
), p.
061001
.
29.
You
,
K.
, and
Xie
,
L.
,
2011
, “
Network Topology and Communication Data Rate for Consensusability of Discrete-Time Multi-Agent Systems
,”
IEEE Trans. Autom. Control
,
56
(
10
), pp.
2262
2275
.
30.
Cavagna
,
A.
,
Del Castello
,
L.
,
Giardina
,
I.
,
Grigera
,
T.
,
Jelic
,
A.
,
Melillo
,
S.
,
Mora
,
T.
,
Parisi
,
L.
,
Silvestri
,
E.
,
Viale
,
M.
, and
Walczak
,
A. M.
,
2015
, “
Flocking and Turning: A New Model for Self-Organized Collective Motion
,”
J. Stat. Phys.
,
158
(
3
), pp.
601
627
.
31.
Ballerini
,
M.
,
Cabibbo
,
N.
,
Candelier
,
R.
,
Cavagna
,
A.
,
Cisbani
,
E.
,
Giardina
,
I.
,
Lecomte
,
V.
,
Orlandi
,
A.
,
Parisi
,
G.
,
Procaccini
,
A.
,
Viale
,
M.
, and
Zdravkovic
,
V.
,
2008
, “
Interaction Ruling Animal Collective Behavior Depends on Topological Rather Than Metric Distance: Evidence From a Field Study
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
4
), pp.
1232
1237
.
32.
Ren
,
W.
,
2007
, “
Multi-Vehicle Consensus With a Time-Varying Reference State
,”
Syst. Control Lett.
,
56
(
7–8
), pp.
474
483
.
33.
Ortega
,
J.
,
1987
,
Matrix Theory, Classics in Applied Mathematics
, Vol.
3
,
Plenum Press
,
New York
.
34.
Dohner
,
J.
,
1998
, “
A Guidance and Control Algorithm for Scent Tracking Micro-Robotic Vehicle Swarms
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
3
), pp.
353
359
.
35.
Zhang
,
P.
,
de Queiroz
,
M.
, and
Cai
,
X.
,
2015
, “
Three-Dimensional Dynamic Formation Control of Multi-Agent Systems Using Rigid Graphs
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111006
.
You do not currently have access to this content.