Driver-machine shared control scheme opens up a new frontier for the design of driver assistance system, especially for improving active safety in emergency scenario. However, the driver's stress response to steering assistance and strong tire nonlinearity are main challenges suffered by controller designing for collision avoidance. These unfavorable factors are particularly pronounced during emergency steering maneuvers and sharply degrade shared control performance. This paper proposes a fuzzy-linear quadratic regulator (LQR) game-based control scheme to simultaneously enhance vehicle stability while compensating driver's inappropriate steering reaction in emergency avoidance. A piecewise linear-based Takagi–Sugeno (T–S) fuzzy structure is presented to mimic driver's knowledge about vehicle lateral nonlinearity, and the control authority is shared between driver and emergency steering assistance (ESA) system through steer-by-wire (SBW) assembly. An identical piecewise internal model is chosen for ESA and the shared lane-keeping problem is modeled as a fuzzy linear quadratic (LQ) problem, where the symmetrical fuzzy structure further enhances vehicle's ability to handle extreme driving conditions. In particular, the feedback Stackelberg equilibrium solutions of the fuzzy-LQ problem are derived to describe the interactive steering behavior of both agents, which enables the ESA to compensate driver's irrational steering reaction. Hardware-in-the-loop (HIL) experiment demonstrates the ESA's capability in compensating driver's aggressive steering behavior, as well as the copiloting system's excellent tracking and stabilizing performance in emergency collision avoidance.

References

References
1.
World Health Organization
,
2015
,
Global Status Report on Road Safety, 2015
,
World Health Organization
, Geneva, Switzerland.
2.
Salmon
,
P. M.
,
Regan
,
M. A.
, and
Johnston
,
I.
,
2006
, “
Human Error and Road Transport: Phase Two: A Framework for an Error Tolerant Road Transport System
,” Monash University, Accident Research Centre, Clayton, Australia.
3.
Liu
,
Y.
,
Liu
,
Q.
,
Ji
,
X.
,
Hayama
,
R.
,
Mizuno
,
T.
, and
Nakano
,
S.
,
2017
, “
A New Objective Evaluation Method for Vehicle Steering Comfort
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p.
091013
.
4.
Mulder
,
M.
,
Abbink
,
D. A.
, and
Boer
,
E. R.
,
2012
, “
Sharing Control With Haptics: Seamless Driver Support From Manual to Automatic Control
,”
Human Factors
,
54
(
5
), pp.
786
798
.
5.
Mars
,
F.
,
Deroo
,
M.
, and
Hoc
,
J.-M.
,
2014
, “
Analysis of Human-Machine Cooperation When Driving With Different Degrees of Haptic Shared Control
,”
IEEE Trans. Haptics
,
7
(
3
), pp.
324
333
.
6.
Erlien
,
S. M.
,
Fujita
,
S.
, and
Gerdes
,
J. C.
,
2016
, “
Shared Steering Control Using Safe Envelopes for Obstacle Avoidance and Vehicle Stability
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
2
), pp.
441
451
.
7.
Katzourakis
,
D. I.
,
Velenis
,
E.
,
Holweg
,
E.
, and
Happee
,
R.
,
2014
, “
Haptic Steering Support for Driving Near the Vehicle's Handling Limits: Test-Track Case
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
4
), pp.
1781
1789
.
8.
Melman
,
T.
,
de Winter
,
J.
, and
Abbink
,
D.
,
2017
, “
Does Haptic Steering Guidance Instigate Speeding? A Driving Simulator Study Into Causes and Remedies
,”
Accid. Anal. Prev.
,
98
, pp.
372
387
.
9.
Nguyen
,
A.-T.
,
Sentouh
,
C.
, and
Popieul
,
J.-C.
,
2017
, “
Driver-Automation Cooperative Approach for Shared Steering Control Under Multiple System Constraints: Design and Experiments
,”
IEEE Trans. Ind. Electron.
,
64
(
5
), pp.
3819
3830
.
10.
Ercan
,
Z.
,
Carvalho
,
A.
,
Tseng
,
H. E.
,
Gökaşan
,
M.
, and
Borrelli
,
F.
,
2017
, “
A Predictive Control Framework for Torque-Based Steering Assistance to Improve Safety in Highway Driving
,”
Veh. Syst. Dyn.
,
56
(
5
), pp.
810
831
.
11.
Heesen
,
M.
,
Dziennus
,
M.
,
Hesse
,
T.
,
Schieben
,
A.
,
Brunken
,
C.
,
Löper
,
C.
,
Kelsch
,
J.
, and
Baumann
,
M.
,
2014
, “
Interaction Design of Automatic Steering for Collision Avoidance: Challenges and Potentials of Driver Decoupling
,”
IET Intell. Transp. Syst.
,
9
(
1
), pp.
95
104
.
12.
Ma
,
B.
,
Liu
,
Y.
,
Ji
,
X.
, and
Yang
,
Y.
,
2017
, “
Investigation of a Steering Defect and Its Compensation Using a Steering-Torque Control Strategy in an Extreme Driving Situation
,”
Proc. Inst. Mech. Eng., Part D
,
232
(
4
), pp.
534
546
.
13.
Na
,
X.
, and
Cole
,
D. J.
,
2013
, “
Linear Quadratic Game and Non-Cooperative Predictive Methods for Potential Application to Modelling Driver–AFS Interactive Steering Control
,”
Veh. Syst. Dyn.
,
51
(
2
), pp.
165
198
.
14.
Na
,
X.
, and
Cole
,
D. J.
,
2017
, “
Application of Open-Loop Stackelberg Equilibrium to Modeling a Driver's Interaction With Vehicle Active Steering Control in Obstacle Avoidance
,”
IEEE Trans. Human-Mach. Syst.
,
47
(
5
), pp.
673
685
.
15.
Ji
,
X.
,
Yang
,
K.
,
Na
,
X.
,
Lv
,
C.
, and
Liu
,
Y-H.
,
2018
, “
Shared Steering Torque Control for Lane Change Assistance: A Stochastic Game-Theoretic Approach
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
3093
3105
.
16.
Flad
,
M.
,
Fröhlich
,
L.
, and
Hohmann
,
S.
,
2017
, “
Cooperative Shared Control Driver Assistance Systems Based on Motion Primitives and Differential Games
,”
IEEE Trans. Human-Mach. Syst.
,
47
(
5
), pp.
711
722
.
17.
Qu
,
T.
,
Chen
,
H.
,
Cao
,
D.
,
Guo
,
H.
, and
Gao
,
B.
,
2015
, “
Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
1
), pp.
365
375
.
18.
Keen
,
S. D.
, and
Cole
,
D. J.
,
2011
, “
Application of Time-Variant Predictive Control to Modelling Driver Steering Skill
,”
Veh. Syst. Dyn.
,
49
(
4
), pp.
527
559
.
19.
Wu
,
J.
,
Cheng
,
S.
,
Liu
,
B.
, and
Liu
,
C.
,
2017
, “
A Human-Machine-Cooperative-Driving Controller Based on AFS and DYC for Vehicle Dynamic Stability
,”
Energies
,
10
(
11
), p.
1737
.
20.
Di Cairano
,
S.
,
Tseng
,
H. E.
,
Bernardini
,
D.
, and
Bemporad
,
A.
,
2013
, “
Vehicle Yaw Stability Control by Coordinated Active Front Steering and Differential Braking in the Tire Sideslip Angles Domain
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1236
1248
.
21.
Funke
,
J.
,
Brown
,
M.
,
Erlien
,
S. M.
, and
Gerdes
,
J. C.
,
2016
, “
Collision Avoidance and Stabilization for Autonomous Vehicles in Emergency Scenarios
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1204
1216
.
22.
Rantzer
,
A.
, and
Johansson
,
M.
,
2000
, “
Piecewise Linear Quadratic Optimal Control
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
629
637
.
23.
Johansson
,
M.
,
Rantzer
,
A.
, and
Arzen
,
K.-E.
,
1999
, “
Piecewise Quadratic Stability of Fuzzy Systems
,”
IEEE Trans. Fuzzy Syst.
,
7
(
6
), pp.
713
722
.
24.
Tao
,
C.-W.
,
Taur
,
J.-S.
, and
Chen
,
Y.
,
2010
, “
Design of a Parallel Distributed Fuzzy LQR Controller for the Twin Rotor Multi-Input Multi-Output System
,”
Fuzzy Sets Syst.
,
161
(
15
), pp.
2081
2103
.
25.
Ji
,
X.
,
He
,
X.
,
Lv
,
C.
,
Liu
,
Y.
, and
Wu
,
J.
,
2017
, “
A Vehicle Stability Control Strategy With Adaptive Neural Network Sliding Mode Theory Based on System Uncertainty Approximation
,”
Veh. Syst. Dyn.
,
56
(
6
), pp.
923
946
.
26.
Tan
,
Y.
,
Shen
,
H.
,
Huang
,
M.
, and
Mao
,
J.
,
2016
, “
Driver Directional Control Using Two-Point Preview and Fuzzy Decision
,”
J. Appl. Math. Mech.
,
80
(
6
), pp.
459
465
.
27.
Tamaddoni
,
S. H.
,
Taheri
,
S.
, and
Ahmadian
,
M.
,
2011
, “
Optimal Preview Game Theory Approach to Vehicle Stability Controller Design
,”
Veh. Syst. Dyn.
,
49
(
12
), pp.
1967
1979
.
28.
Tan
,
H.-S.
, and
Huang
,
J.
,
2012
, “
Experimental Development of a New Target and Control Driver Steering Model Based on DLC Test Data
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
1
), pp.
375
384
.
29.
Ko
,
H.-S.
, and
Jatskevich
,
J.
,
2007
, “
Power Quality Control of Wind-Hybrid Power Generation System Using Fuzzy-LQR Controller
,”
IEEE Trans. Energy Convers.
,
22
(
2
), pp.
516
527
.
30.
Horiuchi
,
S.
, and
Yuhara
,
N.
,
2000
, “
An Analytical Approach to the Prediction of Handling Qualities of Vehicles With Advanced Steering Control System Using Multi-Input Driver Model
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
490
497
.
31.
Engström
,
J.
,
Johansson
,
E.
, and
Östlund
,
J.
,
2005
, “
Effects of Visual and Cognitive Load in Real and Simulated Motorway Driving
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
8
(
2
), pp.
97
120
.
32.
Başar
,
T.
, and
Olsder
,
G. J.
,
1998
, “
Dynamic Noncooperative Game Theory
,”
SIAM
, Philadelphia, PA.
33.
Wang
,
W.
,
Xi
,
J.
,
Liu
,
C.
, and
Li
,
X.
,
2017
, “
Human-Centered Feed-Forward Control of a Vehicle Steering System Based on a Driver's Path-Following Characteristics
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
6
), pp.
1440
1453
.
34.
Cole
,
D.
,
Pick
,
A.
, and
Odhams
,
A.
,
2006
, “
Predictive and Linear Quadratic Methods for Potential Application to Modelling Driver Steering Control
,”
Veh. Syst. Dyn.
,
44
(
3
), pp.
259
284
.
35.
Ma
,
B.
,
Lv
,
C.
,
Liu
,
Y.
,
Zheng
,
M.
,
Yang
,
Y.
, and
Ji
,
X.
,
2017
,“
Estimation of Road Adhesion Coefficient Based on Tire Aligning Torque Distribution
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
5
), p.
051010
.
36.
Liu
,
Y.-H.
,
Li
,
T.
,
Yang
,
Y.-Y.
,
Ji
,
X.-W.
, and
Wu
,
J.
,
2017
, “
Estimation of Tire-Road Friction Coefficient Based on Combined APF-IEKF and Iteration Algorithm
,”
Mech. Syst. Signal Process.
,
88
, pp.
25
35
.
You do not currently have access to this content.