This paper analyzes how a multisegment, articulated serpentine tail can enhance the maneuvering and stability of a quadrupedal robot. A persistent challenge in legged robots is the need to account for propulsion, maneuvering, and stabilization considerations when generating control inputs for multidegree-of-freedom spatial legs. Looking to nature, many animals offset some of this required functionality to their tails to reduce the required action by their legs. By including a robotic tail on-board a legged robot, the gravitational and inertial loading of the tail can be utilized to provide for the robot's maneuverability and stability, while the legs primarily provide the robot's propulsion. System designs for the articulated serpentine tail and quadrupedal platform are presented, along with the dynamic models used to represent these systems. Outer-loop controllers that implement the desired maneuvering and stabilizing behaviors are discussed, along with an inner-loop controller that maps the desired tail trajectory into motor torque commands for the tail. Case studies showing the tail's ability to modify yaw-angle heading during locomotion (maneuvering) and to reject a destabilizing external disturbance in the roll direction (stabilization) are considered. Simulation results utilizing the tail's dynamic model and experimental results utilizing the tail prototype, in conjunction with the simulated quadrupedal platform, are generated. Successful maneuvering and stabilization are demonstrated by the simulated results and validated through experimentation.

References

1.
Wilson
,
A. M.
,
Lowe
,
J. C.
,
Roskilly
,
K.
,
Hudson
,
P. E.
,
Golabek
,
K. A.
, and
McNutt
,
J. W.
,
2013
, “
Locomotion Dynamics of Hunting in Wild Cheetahs
,”
Nature
,
498
(
7453
), pp.
185
189
.
2.
Jusufi
,
A.
,
Goldman
,
D. I.
,
Revzen
,
S.
, and
Full
,
R. J.
,
2008
, “
Active Tails Enhance Arboreal Acrobatics in Geckos
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
11
), pp.
4215
4219
.
3.
Walker
,
C.
,
Vierck
,
C. J.
, Jr.
, and
Ritz
,
L. A.
,
1998
, “
Balance in the Cat: Role of the Tail and Effects of Sacrocaudal Transection
,”
Behav. Brain Res.
,
91
(
1–2
), pp.
41
47
.
4.
O'Connor
,
S. M.
,
Dawson
,
T. J.
,
Kram
,
R.
, and
Donelan
,
J. M.
,
2014
, “
The Kangaroo's Tail Propels and Powers Pentapedal Locomotion
,”
Biol. Lett.
,
10
, p.
20140381
.
5.
Mallison
,
H.
,
2010
, “
Cad Assessment of the Posture and Range of Motion of Kentrosaurus Aethiopicus Hennig 1915
,”
Swiss J. Geosci.
,
103
(
2
), pp.
211
233
.
6.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2017
, “
Robotic Modular Leg: Design, Analysis and Experimentation
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
024501
.
7.
Saab
,
W.
,
Rone
,
W. S.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design and Integration of a Novel Spatial Articulated Robotic Tail
,”
IEEE Trans. Mechatronics
(in press).
8.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Robotic Tails: A State of the Art Review
,”
Robotica
,
36
(
9
), pp.
1263
1277
.
9.
Patel
,
A.
, and
Braae
,
M.
,
2014
, “
Rapid Acceleration and Braking: Inspirations From the Cheetah's Tail
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
793
799
.
10.
Chang-Siu
,
E.
,
Libby
,
T.
,
Tomizuka
,
M.
, and
Full
,
R. J.
,
2011
, “
A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30, pp.
1887
1894
.
11.
Liu
,
G.-H.
,
Lin
,
H.-Y.
,
Lin
,
H.-Y.
,
Chen
,
S.-T.
, and
Lin
,
P.-C.
,
2014
, “
A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,”
J. Bionic Eng.
,
11
(
4
), pp.
541
555
.
12.
Berenguer
,
F. J.
, and
Monasterio-Huelin
,
F. M.
,
2008
, “
Zappa, a Quasi-Passive Biped Walking Robot With a Tail: Modeling, Behavior, and Kinematic Estimation Using Accelerometers
,”
IEEE Trans. Ind. Electron.
,
55
(
9
), pp.
3281
3289
.
13.
Casarez
,
C.
,
Penskiy
,
I.
, and
Bergbreiter
,
S.
,
2013
, “
Using an Inertial Tail for Rapid Turns on a Miniature Legged Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
5469
5474
.
14.
Patel
,
A.
, and
Braae
,
M.
,
2013
, “
Rapid Turning at High-Speed: Inspirations From the Cheetah's Tail
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
5506
5511
.
15.
Ikeda
,
F.
, and
Toyama
,
S.
,
2015
, “
A Proposal of Right and Left Turning Mechanism for Quasi-Passive Walking Robot
,”
IEEE International Conference on Advanced Robotics and Intelligent Systems
(
ARIS
), Taipei, Taiwan, May 29–31.
16.
Chang-Siu
,
E.
,
Libby
,
T.
,
Brown
,
M.
,
Full
,
R. J.
, and
Tomizuka
,
M.
,
2013
, “
A Nonlinear Feedback Controller for Aerial Self-Righting by a Tailed Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
32
39
.
17.
Mutka
,
A.
,
Orsag
,
M.
, and
Kovacic
,
Z.
,
2013
, “
Stabilizing a Quadruped Robot Locomotion Using a Two Degree of Freedom Tail
,”
21st Mediterranean Conference on Control and Automation
, Chania, Greece, June 25–28, pp.
1336
1342
.
18.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vilamoura, Portugal, Oct. 7–12, pp.
1473
1480
.
19.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041001
.
20.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2017
, “
Design, Modeling and Optimization of the Universal-Spatial Robotic Tail
,”
ASME
Paper No. IMECE2017-71463.
21.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Discrete Modular Serpentine Robotic Tail: Design, Analysis and Experimentation
,”
Robotica
,
36
(
7
), pp.
994
1018
.
22.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2016
, “
Dynamic Modeling and Simulation of a Yaw-Angle Quadruped Maneuvering With a Robotic Tail
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
084502
.
23.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2017
, “
Maneuvering and Stabilizing Control of a Quadrupedal Robot Using a Serpentine Robotic Tail
,”
IEEE Conference on Control Technology and Applications
(
CCTA
), Mauna Lani, HI, Aug. 27–30, pp.
1763
1768
.
24.
Godage
,
I. S.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Medrano-Cerda
,
G. A.
, and
Caldwell
,
D. G.
,
2011
, “
Dynamics for Biomimetic Continuum Arms: A Modal Approach
,”
IEEE
International Conference on Robotics and Biomimetics
, Phuket, Thailand, Dec. 7–11, pp.
104
109
.
25.
Hannan
,
M. W.
, and
Walker
,
I. D.
,
2003
, “
Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
26.
Li
,
T.
,
Nakajima
,
K.
, and
Pfeifer
,
R.
,
2013
, “
Online Learning for Behavior Switching in a Soft Robotic Arm
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
1296
1302
.
27.
Braganza
,
D.
,
Dawson
,
D. M.
,
Walker
,
I. D.
, and
Nath
,
N.
,
2007
, “
A Neural Network Controller for Continuum Robots
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1270
1277
.
28.
Chitrakaran
,
V. K.
,
Behal
,
A.
,
Dawson
,
D. M.
, and
Walker
,
I. D.
,
2007
, “
Setpoint Regulation of Continuum Robots Using a Fixed Camera
,”
Robotica
,
25
(
5
), pp.
581
586
.
29.
Camarillo
,
D. B.
,
Carlson
,
C. R.
, and
Salisbury
,
J. K.
,
2009
, “
Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
798
808
.
30.
Bajo
,
A.
,
Goldman
,
R. E.
, and
Simaan
,
N.
,
2011
, “
Configuration and Joint Feedback for Enhanced Performance of Multi-Segment Continuum Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2905
2912
.
31.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatronics
,
8
(
2
), pp.
299
307
.
You do not currently have access to this content.