This paper concerns with global fixed-time trajectory tracking of robot manipulators. A simple nonlinear inverse dynamics control (IDC) is proposed by using bi-limit homogeneity technique. Lyapunov stability theory and geometric bi-limit homogeneity technique are employed to prove global fixed-time tracking stability. It is proved that there exists a convergence time that is uniformly bounded a priori and such a bound is independent of the initial states such that the tracking errors converge to zero globally. The appealing advantages of the proposed control are that it is fairly easy to construct and has the global fixed-time tracking stability featuring faster transient and higher steady-state precision. Numerical simulation comparisons are provided to demonstrate the improved performance of the proposed approach.

References

References
1.
Incremona
,
G. P.
, and
Ferrara
,
A.
,
2017
, “
MPC for Robot Manipulators With Integral Sliding Modes Generation
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1299
1307.
2.
Zirkohi
,
M. M.
,
2017
, “
Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
1
), p.
011006
.
3.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
0910041
.
4.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.
5.
Hong
,
Y.
,
Xu
,
Y.
, and
Huang
,
J.
,
2002
, “
Finite-Time Control for Robot Manipulators
,”
Syst. Control Lett.
,
46
(
4
), pp.
243
253
.
6.
Venkataraman
,
S. T.
, and
Gulati
,
S.
,
1993
, “
Control of Nonlinear Systems Using Terminal Sliding Modes
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
3
), pp.
554
560
.
7.
Man
,
Z.
,
Paplinski
,
P. A.
, and
Wu
,
H.
,
1994
, “
A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2464
2469
.
8.
Tang
,
Y.
,
1998
, “
Terminal Sliding Mode Control for Rigid Robots
,”
Automatica
,
34
(
1
), pp.
51
56
.
9.
Park
,
K.-B.
, and
Lee
,
J.-J.
,
1996
, “
Comments on ‘A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robotic Manipulators’
,”
IEEE Trans. Autom. Control
,
41
(
5
), pp.
761
762
.
10.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
2002
, “
Non-Singular Terminal Sliding Mode Control of Rigid Manipulators
,”
Automatica
,
38
(
12
), pp.
2159
2167
.
11.
Yu
,
S. H.
,
Yu
,
X. H.
,
Shirinzadeh
,
B. J.
, and
Man
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
12.
Jin
,
M.
,
Lee
,
J.
,
Chang
,
P. H.
, and
Choi
,
C.
,
2009
, “
Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3593
3601
.
13.
Yang
,
L.
, and
Yang
,
J. Y.
,
2011
, “
Nonsingular Fast Terminal Sliding-Mode Control for Nonlinear Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
21
(
16
), pp.
1865
1879
.
14.
Barambones
,
O.
, and
Etxebarria
,
V.
,
2002
, “
Energy-Based Approach to Sliding Composite Adaptive Control for Rigid Robots With Finite Error Convergence Time
,”
Int. J. Control
,
75
(
5
), pp.
352
359
.
15.
Zhao
,
D. Y.
,
Li
,
S. Y.
, and
Gao
,
F.
,
2009
, “
A New Terminal Sliding Mode Control for Robotic Manipulators
,”
Int. J. Control
,
82
(
10
), pp.
1804
1813
.
16.
Su
,
Y. X.
,
2017
, “
Comments on ‘A New Terminal Sliding Mode Control for Robotic Manipulators’
,”
Int. J. Control
,
90
(
2
), pp.
247
254
.
17.
Wang
,
L. Y.
,
Chai
,
T. Y.
, and
Zhai
,
L. F.
,
2009
, “
Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3296
3304
.
18.
Chiu
,
C.-S.
,
2012
, “
Derivative and Integral Terminal Sliding Mode Control for a Class of MIMO Nonlinear Systems
,”
Automatica
,
48
(
2
), pp.
316
326
.
19.
Galicki
,
M.
,
2015
, “
Finite-Time Control of Robotic Manipulators
,”
Automatica
,
51
, pp.
49
54
.
20.
Galicki
,
M.
,
2016
, “
Finite-Time Trajectory Tracking Control in a Task Space of Robotic Manipulators
,”
Automatica
,
67
, pp.
165
170
.
21.
Van
,
M.
,
Ge
,
S. S.
, and
Ren
,
H. L.
,
2017
, “
Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control
,”
IEEE Trans. Cybern.
,
47
(
7
), pp.
1681
1693
.
22.
Su
,
Y. X.
,
2009
, “
Global Continuous Finite-Time Tracking of Robot Manipulators
,”
Int. J. Robust Nonlinear Control
,
19
(
17
), pp.
1871
1885
.
23.
Su
,
Y. X.
, and
Zheng
,
C. H.
,
2011
, “
Global Finite-Time Inverse Tracking Control of Robot Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
27
(
3
), pp.
550
557
.
24.
Su
,
Y. X.
, and
Swevers
,
J.
,
2014
, “
Finite-Time Tracking Control for Robot Manipulators With Actuator Saturation
,”
Rob. Comput.-Integr. Manuf.
,
30
(
2
), pp.
91
98
.
25.
Andrieu
,
V.
,
Praly
,
L.
, and
Astolfi
,
A.
,
2008
, “
Homogeneous Approximation, Recursive Observer Design and Output Feedback
,”
SIAM J. Control Optim.
,
47
(
4
), pp.
1814
1850
.
26.
Polyakov
,
A.
,
2012
, “
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems
,”
IEEE Trans. Autom. Control
,
57
(
8
), pp.
2106
2110
.
27.
Polyakov
,
A.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2015
, “
Finite-Time and Fixed-Time Stabilization: Implicit Lyapunov Function Approach
,”
Automatica
,
51
, pp.
332
340
.
28.
Zuo
,
Z. Y.
,
2015
, “
Non-Singular Fixed-Time Consensus Tracking for Second-Order Multi-Agent Networks
,”
Automatica
,
54
, pp.
305
309
.
29.
Zuo
,
Z. Y.
,
2015
, “
Non-Singular Fixed-Time Terminal Sliding Mode Control of Non-Linear Systems
,”
IET Control Theory Appl.
,
9
(
4
), pp.
545
552
.
30.
Ni
,
J. K.
,
Liu
,
L.
,
Liu
,
C. X.
,
Hu
,
X. Y.
, and
Li
,
S. L.
,
2017
, “
Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System
,”
IEEE Trans. Circuits Syst. II
,
64
(
2
), pp.
151
155
.
31.
Tian
,
B. L.
,
Zuo
,
Z. Y.
,
Yan
,
X. M.
, and
Wang
,
H.
,
2017
, “
A Fixed-Time Output Feedback Control Scheme for Double Integrator System
,”
Automatica
,
80
(
11
), pp.
17
24
.
32.
Zhang
,
Z. C.
, and
Wu
,
Y. Q.
,
2017
, “
Fixed-Time Regulation Control of Uncertain Nonholonomic Systems and Its Applications
,”
Int. J. Control
,
90
(
7
), pp.
1327
1344
.
33.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
Hoboken, NJ
.
34.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.