This paper presents a fault detection and isolation (FDI) approach for actuator faults of complex thermal management systems. In the case of safety critical systems, early fault diagnosis not only improves system reliability, but can also help prevent complete system failure (i.e., aircraft system). In this work, a robust unknown input observer (UIO)-based actuator FDI approach is applied on an example aircraft fluid thermal management system (FTMS). Robustness is achieved by decoupling the effect of unknown inputs modeled as additive disturbances (i.e., modeling errors, linearization errors, parameter variations, or model order reduction errors) from the residuals generated from a bank of UIOs. Robustness is central to avoid false alarms without reducing residual sensitivity to actual faults in the system. System dynamics are modeled using a graph-based approach. A structure preserving aggregation-based model-order reduction technique is used to reduce the complexity of the dynamic model. A reduced-order linearized state space model is then used in a bank of UIOs to generate a set of structured robust (in the sense of disturbance decoupling) residuals. Simulation and experimental results show successful (i.e., no false alarms) actuator FDI in the presence of unknown inputs.

References

1.
Favre
,
C.
,
1994
, “
Fly-By-Wire for Commercial Aircraft: The Airbus Experience
,”
Int. J. Control
,
59
(
1
), pp.
139
157
.
2.
Kiyak
,
E.
,
Cetin
,
O.
, and
Kahvecioglu
,
A.
,
2008
, “
Aircraft Sensor Fault Detection Based on Unknown Input Observers
,”
Aircr. Eng. Aerosp. Technol. Int. J.
,
80
(
5
), pp.
545
548
.
3.
Briere
,
D.
, and
Traverse
,
P.
,
1993
, “
AIRBUS A320/A330/A340 Electrical Flight Controls a Family of Fault-Tolerant Systems
,”
23rd International Symposium on Fault-Tolerant Computing (FTCS-23)
,
Toulouse, France
,
June 22–24
, pp.
616
623
.
4.
Castaldi
,
P.
,
Geri
,
W.
,
Bonfè
,
M.
,
Simani
,
S.
, and
Benini
,
M.
,
2010
, “
Design of Residual Generators and Adaptive Filters for the FDI of Aircraft Model Sensors
,”
Control Eng. Pract.
,
18
(
5
), pp.
449
459
.
5.
Dimogianopoulos
,
D. G.
,
Hios
,
J. D.
, and
Fassois
,
S. D.
,
2009
, “
FDI for Aircraft Systems Using Stochastic Pooled-NARMAX Representations: Design and Assessment
,”
IEEE Trans. Control Syst. Technol.
,
17
(
6
), pp.
1385
1397
.
6.
Bokor
,
J.
,
Ganguli
,
S.
,
Szaszi
,
I.
,
Balas
,
G. J.
, and
Marcos
,
A.
,
2002
, “
Application of FDI to a Nonlinear Boeing-747 Aircraft
,”
Tenth Mediterranean Conference on Control and Automation (MED2002)
,
Lisbon, Portugal
,
July 9–12
.
7.
Xue
,
W.
,
Guo
,
Y. Q.
, and
Zhang
,
X. D.
,
2008
, “
Application of a Bank of Kalman Filters and a Robust Kalman Filter for Aircraft Engine Sensor/actuator Fault Diagnosis
,”
Int. J. Innov. Comput. Inf. Control
,
4
(
12
), pp.
3161
3168
.
8.
Fravolini
,
M. L.
,
Brunori
,
V.
,
Campa
,
G.
,
Napolitano
,
M. R.
, and
Cava
,
M. L.
,
2009
, “
Structural Analysis Approach for the Generation of Structured Residuals for Aircraft FDI
,”
IEEE Trans. Aerosp. Electron. Syst.
,
45
(
4
), p.
1446
.
9.
Wang
,
D.
, and
Lum
,
K.-Y.
,
2007
, “
Adaptive Unknown Input Observer Approach for Aircraft Actuator Fault Detection and Isolation
,”
Int. J. Adapt. Control Signal Process
,
21
(1), pp. 31–48.
10.
Goupil
,
P.
,
2011
, “
AIRBUS State of the Art and Practices on FDI and FTC in Flight Control System
,”
Control Eng. Pract.
,
19
(
6
), pp.
524
539
.
11.
Seng
,
Y.
, and
Srinivasan
,
R.
,
2010
, “
Engineering Applications of Artificial Intelligence Multi-Agent Based Collaborative Fault Detection and Identification in Chemical Processes
,”
Eng. Appl. Artif. Intell.
,
23
(
6
), pp.
934
949
.
12.
Chetouani
,
Y.
,
2008
, “
Design of a Multi-Model Observer-Based Estimator for Fault Detection and Isolation (FDI) Strategy: Application to a Chemical Reactor
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
777
788
.
13.
Sotomayor
,
O. A. Z.
, and
Odloak
,
D.
,
2005
, “
Observer-Based Fault Diagnosis in Chemical Plants
,”
Chem. Eng. J.
,
112
(
1–3
), pp.
93
108
.
14.
Roy
,
K.
,
Banavar
,
R. N.
, and
Thangasamy
,
S.
,
1998
, “
Application of Fault Detection and Identification (FDI) Techniques in Power Regulating Systems of Nuclear Reactors
,”
IEEE Trans. Nucl. Sci.
,
45
(
6
), pp.
3184
3201
.
15.
Upadhyaya
,
B.
,
Zhao
,
K.
, and
Lu
,
B.
,
2003
, “
Fault Monitoring of Nuclear Power Plant Sensors and Field Devices
,”
Prog. Nucl. Energy
,
43
(
1–4
), pp.
337
342
.
16.
Peuget
,
R.
,
Courtine
,
S.
, and
Rognon
,
J.
,
1998
, “
Fault Detection and Isolation on a PWM Inverter by Knowledge-Based Model
,”
IEEE Trans. Ind. Appl.
,
34
(
6
), pp.
1318
1326
.
17.
Hwang
,
I.
,
Kim
,
S.
,
Kim
,
Y.
, and
Seah
,
C. E.
,
2010
, “
A Survey of Fault Detection, Isolation, and Reconfiguration Methods
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
636
653
.
18.
Frank
,
P. M.
,
1990
, “
Fault Diagnosis in Dynamic Systems Using Analytical Knowledge-Based Redundancy—A Survey and Some New Results
,”
Automatica
,
26
(
3
), pp.
459
474
.
19.
Gao
,
Z.
,
Cecati
,
C.
, and
Ding
,
S. X.
,
2015
, “
A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3768
3774
.
20.
Ray
,
A.
, and
Desai
,
M.
,
1986
, “
A Redundancy Management Procedure for Fault Detection and Isolation
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
248
254
.
21.
Shim
,
D. S.
, and
Yang
,
C. K.
,
2010
, “
Optimal Configuration of Redundant Inertial Sensors for Navigation and FDI Performance
,”
Sensors
,
10
(
7
), pp.
6497
6512
.
22.
Gertler
,
J. J.
,
1991
, “
Analytical Redundancy Methods in Fault Detection and Isolation-Survey and Synthesis
,”
IFAC Proc.
24
(
6
), pp.
9
21
.
23.
Chow
,
E. Y.
, and
Willsky
,
A. S.
,
1984
, “
Analytical Redundancy and the Design of Robust Failure-Detection Systems
,”
IEEE Trans. Automat. Control
,
29
(
7
), pp.
603
614
.
24.
Patton
,
R. J.
, and
Chen
,
J.
,
1997
, “
Observer-Based Fault Detection and Isolation: Robustness and Applications
,”
Control Eng. Pract.
,
5
(
5
), pp.
671
682
.
25.
Frank
,
P. M.
, and
Ding
,
X.
,
1997
, “
Survey of Robust Residual Generation and Evaluation Methods in Observer-Based Fault Detection Systems
,”
J. Proc. Control
,
7
(
6
), pp.
403
424
.
26.
Mondal
,
S.
,
Chakraborty
,
G.
, and
Bhattacharyya
,
K.
,
2008
, “
Robust Unknown Input Observer for Nonlinear Systems and Its Application to Fault Detection and Isolation
,”
ASME J. Dyn. Syst. Meas. Control
,
130
(
4
), p.
044503
.
27.
Liu
,
C.-S.
, and
Peng
,
H.
,
2002
, “
Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
3
), pp.
375
381
.
28.
Chen
,
W.
, and
Saif
,
M.
,
2007
, “
Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster Faults
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
3
), p.
352
.
29.
Chen
,
J.
,
Patton
,
R. J.
, and
Zhang
,
H. Y.
,
1996
, “
Design of Unknown Input Observers and Robust Fault Detection Filters
,”
Int. J. Control
,
63
(
1
), pp.
85
105
.
30.
Koeln
,
J. P.
,
Williams
,
M. A.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2016
, “
Experimental Validation of Graph-Based Modeling for Thermal Fluid Power Flow Systems
,”
ASME
Paper No.
DSCC2016-9782.
31.
Pangborn
,
H. C.
,
Koeln
,
J. P.
,
Williams
,
M. A.
, and
Alleyne
,
A. G.
,
2018
, “
Experimental Validation of Graph-Based Hierarchical Control for Thermal Management
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
10
), p.
101016
.
32.
Moore
,
B.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Automat. Control
,
26
(
1
), pp.
17
32
.
33.
Glover
,
K.
,
1984
, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L, ∞ -Error Bounds
,”
Int. J. Control
,
39
(
6
), pp.
1115
1193
.
34.
Schilders
,
W.
,
2008
,
Introduction to Model Order Reduction
, Springer, Berlin.
35.
Deng
,
K.
,
Barooah
,
P.
,
Mehta
,
P. G.
, and
Meyn
,
S. P.
,
2010
, “
Building Thermal Model Reduction Via Aggregation of States
,”
American Control Conference (ACC)
,
Baltimore, MD
,
June 30–July 2
, pp.
5118
5123
.
36.
Deng
,
K.
,
Goyal
,
S.
,
Barooah
,
P.
, and
Mehta
,
P. G.
,
2014
, “
Structure-Preserving Model Reduction of Nonlinear Building Thermal Models
,”
Automatica
,
50
(
4
), pp.
1188
1195
.
37.
Chen
,
J.
,
2014
,
Robust Model-Based Fault Diagnosis for Dynamic Systems
, Vol.
1
, Springer, New York.
38.
Corless
,
M.
, and
Tu
,
J.
,
1998
, “
State and Input Estimation for a Class of Uncertain Systems
,”
Automatica
,
34
(
6
), pp.
757
764
.
39.
Darouach
,
M.
,
Zasadzinski
,
M.
, and
Xu
,
S. J. J.
,
1994
, “
Full-Order Observers for Linear Systems With Unknown Inputs
,”
IEEE Trans. Automat. Control
,
39
(
3
), pp.
606
609
.
40.
Guan
,
Y.
, and
Saif
,
M.
,
1991
, “
A Novel Approach to the Design of Unknown Input Observers
,”
IEEE Trans. Autom. Control
,
36
(
5
), pp.
632
635
.
41.
Hou
,
M.
, and
Muller
,
P. C.
,
1992
, “
Design of Observers for Linear Systems With Unknown Inputs
,”
IEEE Trans. Automat. Control
,
37
(
6
), pp.
871
875
.
42.
Hudson
,
W. A.
, and
Levin
,
M. L.
,
1998
, “
Integrated Aircraft Fuel Thermal Thermal Management System
,” U.S. Patent No. 4776536.
You do not currently have access to this content.