Backlash, also known as mechanical play, is a piecewise differentiable nonlinearity which exists in several actuated systems, comprising, e.g., rack-and-pinion drives, shaft couplings, toothed gears, and other machine elements. Generally, the backlash is nested between the moving parts of a complex dynamic system, which handicaps its proper detection and identification. A classical example is the two-mass system which can approximate numerous mechanisms connected by a shaft (or link) with relatively high stiffness and backlash in series. Information about the presence and extent of the backlash is seldom exactly known and is rather conditional upon factors such as wear, fatigue, and incipient failures in the components. This paper proposes a novel backlash identification method using one-side sensing of a two-mass system. The method is based on the delayed relay operator in feedback that allows stable and controllable limit cycles to be induced and operated within the (unknown) backlash gap. The system model, with structural transformations required for the one-side backlash measurements, is given, along with the analysis of the delayed relay in velocity feedback. Experimental evaluations are shown for a two-inertia motor bench that has coupling with backlash gap of about 1 deg.

References

References
1.
Nordin
,
M.
, and
Gutman
,
P.-O.
,
2002
, “
Controlling Mechanical Systems With Backlash—A Survey
,”
Automatica
,
38
(
10
), pp.
1633
1649
.
2.
Dion
,
J.-L.
,
Le Moyne
,
S.
,
Chevallier
,
G.
, and
Sebbah
,
H.
,
2009
, “
Gear Impacts and Idle Gear Noise: Experimental Study and Non-Linear Dynamic Model
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2608
2628
.
3.
Tjahjowidodo
,
T.
,
Al-Bender
,
F.
, and
Van Brussel
,
H.
,
2007
, “
Quantifying Chaotic Responses of Mechanical Systems With Backlash Component
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
973
993
.
4.
Tao
,
G.
, and
Kokotovic
,
P. V.
,
1995
, “
Continuous-Time Adaptive Control of Systems With Unknown Backlash
,”
IEEE Trans. Autom. Control
,
40
(
6
), pp.
1083
1087
.
5.
Hägglund
,
T.
,
2007
, “
Automatic On-Line Estimation of Backlash in Control Loops
,”
J. Process Control
,
17
(
6
), pp.
489
499
.
6.
Brandenburg
,
G.
,
Unger
,
H.
, and
Wagenpfeil
,
A.
,
1986
, “
Stability Problems of a Speed Controlled Drive in an Elastic System With Backlash and Corrective Measures by a Load Observer
,”
International Conference on Electrical Machines
,
Munich, Germany
, pp.
523
527
.
7.
Hori
,
Y.
,
Iseki
,
H.
, and
Sugiura
,
K.
,
1994
, “
Basic Consideration of Vibration Suppression and Disturbance Rejection Control of Multi-Inertia System Using SFLAC (State Feedback and Load Acceleration Control)
,”
IEEE Trans. Ind. Appl.
,
30
(
4
), pp.
889
896
.
8.
Gerdes
,
J. C.
, and
Kumar
,
V.
,
1995
, “
An Impact Model of Mechanical Backlash for Control System Analysis
,” American Control Conference (
ACC
), Seattle, WA, June 21–23, pp.
3311
3315
.
9.
Ruderman
,
M.
,
Hoffmann
,
F.
, and
Bertram
,
T.
,
2009
, “
Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
3840
3847
.
10.
Morimoto
,
T. K.
,
Hawkes
,
E. W.
, and
Okamura
,
A. M.
,
2017
, “
Design of a Compact Actuation and Control System for Flexible Medical Robots
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1579
1585
.
11.
Gebler
,
D.
, and
Holtz
,
J.
,
1998
, “
Identification and Compensation of Gear Backlash Without Output Position Sensor in High-Precision Servo Systems
,”
IEEE 24th Annual Conference of the Industrial Electronics Society
(
IECON
'98), Aachen, Germany, Aug. 31–Sept. 4, pp.
662
666
.
12.
Villwock
,
S.
, and
Pacas
,
M.
,
2009
, “
Time-Domain Identification Method for Detecting Mechanical Backlash in Electrical Drives
,”
IEEE Trans. Ind. Electron.
,
56
(
2
), pp.
568
573
.
13.
Lagerberg
,
A.
, and
Egardt
,
B.
,
2007
, “
Backlash Estimation With Application to Automotive Powertrains
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
483
493
.
14.
Yamada
,
S.
, and
Fujimoto
,
H.
,
2016
, “
Proposal of High Backdrivable Control Using Load-Side Encoder and Backlash
,”
IEEE 42nd Annual Conference of Industrial Electronics Society
(
IECON
), Florence, Italy, Oct. 23–26, pp.
6429
6434
.
15.
Tustin
,
A.
,
1947
, “
The Effects of Backlash and of Speed-Dependent Friction on the Stability of Closed-Cycle Control Systems
,” J. Inst. Electr. Eng.—Part IIA:
Autom. Regulators Servo Mech.
,
94
, pp.
143
151
.
16.
Merzouki
,
R.
,
Davila
,
J.
,
Fridman
,
L.
, and
Cadiou
,
J.
,
2007
, “
Backlash Phenomenon Observation and Identification in Electromechanical System
,”
Control Eng. Pract.
,
15
(
4
), pp.
447
457
.
17.
Tjahjowidodo
,
T.
,
Al-Bender
,
F.
, and
Van Brussel
,
H.
,
2007
, “
Experimental Dynamic Identification of Backlash Using Skeleton Methods
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
959
972
.
18.
Lichtsinder
,
A.
, and
Gutman
,
P.-O.
,
2016
, “
Closed-Form Sinusoidal-Input Describing Function for the Exact Backlash Model
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
422
427
.
19.
Nordin
,
M.
,
Galic'
,
J.
, and
Gutman
,
P.-O.
,
1997
, “
New Models for Backlash and Gear Play
,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
49
63
.
20.
Barbosa
,
R. S.
, and
Machado
,
J. T.
,
2002
, “
Describing Function Analysis of Systems With Impacts and Backlash
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
235
250
.
21.
Yang
,
M.
,
Tang
,
S.
,
Tan
,
J.
, and
Xu
,
D.
,
2012
, “
Study of On-Line Backlash Identification for Pmsm Servo System
,”
38th Annual Conference on IEEE Industrial Electronics Society
(
IECON
), Montreal, QC, Canada, Oct. 25–28, pp.
2036
2042
.
22.
Andronov
,
A. A.
, and
Khajkin
,
S.
,
1949
,
Theory of Oscillations
,
Princeton University Press
,
Princeton, NJ
.
23.
Mullin
,
J. F.
, and
Jury
,
I. E.
,
1959
, “
A Phase-Plane Approach to Relay Sampled-Data Feedback Systems
,”
Trans. Am. Inst. Electr. Eng., Part II: Appl. Ind.
,
77
(
6
), pp.
517
524
.
24.
Hang
,
C.
,
Astrom
,
K.
, and
Wang
,
Q.
,
2002
, “
Relay Feedback Auto-Tuning of Process Controllers—A Tutorial Review
,”
J. Process Control
,
12
(
1
), pp.
143
162
.
25.
Mizuno
,
T.
,
Adachi
,
T.
,
Takasaki
,
M.
, and
Ishino
,
Y.
,
2008
, “
Mass Measurement System Using Relay Feedback With Hysteresis
,”
J. Syst. Des. Dyn.
,
2
(
1
), pp.
188
196
.
26.
Han
,
Y.
,
Liu
,
C.
, and
Wu
,
J.
,
2016
, “
Backlash Identification for PMSM Servo System Based on Relay Feedback
,”
Nonlinear Dyn.
,
84
(
4
), pp.
2363
2375
.
27.
Ruderman
,
M.
, and
Iwasaki
,
M.
,
2015
, “
Observer of Nonlinear Friction Dynamics for Motion Control
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5941
5949
.
28.
Ruderman
,
M.
, and
Rachinskii
,
D.
,
2017
, “
Use of Prandtl-Ishlinskii Hysteresis Operators for Coulomb Friction Modeling With Presliding
,”
J. Phys.: Conf. Ser.
,
811
(
1
), p.
012013
.
29.
Hunt
,
K.
, and
Crossley
,
F.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
30.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1994
, “
Continuous Contact Force Models for Impact Analysis in Multibody Systems
,”
Nonlinear Dyn.
,
5
(
2
), pp.
193
207
.
31.
Visintin
,
A.
,
1994
,
Differential Models of Hysteresis
,
Springer
,
Berlin
.
32.
Krejci
,
P.
,
1996
,
Hysteresis, Convexity and Dissipation in Hyperbolic Equations
,
Gattötoscho
,
Tokyo, Japan
.
33.
Rostalski
,
P.
,
Besselmann
,
T.
,
Barić
,
M.
,
Belzen
,
F. V.
, and
Morari
,
M.
,
2007
, “
A Hybrid Approach to Modelling, Control and State Estimation of Mechanical Systems With Backlash
,”
Int. J. Control
,
80
(
11
), pp.
1729
1740
.
34.
Åström
,
K. J.
,
1995
, “
Oscillations in Systems With Relay Feedback
,” Adaptive Control, Filtering, and Signal Processing, Vol. 74, K. J. Åström, G. C. Goodwin, and P. R. Kumar, eds., Springer, New York, pp.
1
25
.
35.
Gonçalves
,
J. M.
,
Megretski
,
A.
, and
Dahleh
,
M. A.
,
2001
, “
Global Stability of Relay Feedback Systems
,”
IEEE Trans. Autom. Control
,
46
(
4
), pp.
550
562
.
36.
Johansson
,
K. H.
,
Rantzer
,
A.
, and
Åström
,
K. J.
,
1999
, “
Fast Switches in Relay Feedback Systems
,”
Automatica
,
35
(
4
), pp.
539
552
.
37.
Lichtsinder
,
A.
, and
Gutman
,
P.-O.
,
2010
, “
Limit Cycle Existence Condition in Control Systems With Backlash and Friction
,”
IFAC Proc. Vol.
,
43
(
14
), pp.
469
474
.
38.
Ruderman
,
M.
,
2015
, “
Computationally Efficient Formulation of Relay Operator for Preisach Hysteresis Modeling
,”
IEEE Trans. Magn.
,
51
(
12
), pp.
1
4
.
You do not currently have access to this content.