Combining the flexible carcass beam and the radial sidewall element, flexible beam on elastic foundation with combined sidewall stiffness tire model is proposed for heavy-loaded off-road tire with a large section ratio. The circumferential vibration of flexible carcass is modeled as Euler beam and the influence of inflation pressure on the circumferential vibration of flexible carcass is investigated with the modal experiment and theoretical modeling. The structural stiffness caused by the sidewall curvature and pretension stiffness caused by the inflation pressure is combined for the radial sidewall element. The influence of the sidewall structural parameters on the combined stiffness of sidewall and modal resonant frequency is researched and discussed. The nonlinear combined stiffness of sidewall is investigated with respect to the radial sidewall deformation. Experimental and theoretical results show that: (1) the combined stiffness of sidewall can character the pretension stiffness caused by inflation pressure and the structural stiffness led by the sidewall curvature and material properties and (2) the combined stiffness of sidewall is nonlinear with respect to the radial sidewall deformation, which is prominent with high inflation pressure. Taking the flexibility characteristic of tire carcass and the nonlinear stiffness of sidewall into consideration, flexible beam on elastic foundation with combined sidewall stiffness tire model is suitable for the heavy-loaded off-road tire with a large section ratio or tires under impulsive loading and large deformation.

References

References
1.
Alireza
,
P.
,
Subhash
,
R.
, and
Cao
,
D.
,
2012
, “
Modeling and Validation of Off-Road Vehicle Ride Dynamics
,”
Mech. Syst. Signal Process.
,
28
, pp.
679
695
.
2.
Amir
,
S.
,
Avesta
,
G.
, and
Mohamad
,
H. S.
,
2015
, “
Optimizing Tire Vertical Stiffness Based on Ride, Handling, Performance, and Fuel Consumption Criteria
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
12
), p.
121004
.
3.
Jaafari
,
S. M. M.
, and
Shirazi
,
K. H.
,
2018
, “
Integrated Vehicle Dynamics Control Via Torque Vectoring Differential and Electronic Stability Control to Improve Vehicle Handling and Stability Performance
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
7
), p.
071003
.
4.
Jia
,
G.
,
Li
,
L.
, and
Cao
,
D.
,
2015
, “
Model-Based Estimation for Vehicle Dynamics States at the Limit Handling
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
104501
.
5.
Wei
,
C.
,
Olatunbosun
,
O. A.
, and
Behroozi
,
M.
,
2016
, “
Simulation of Tyre Rolling Resistance Generated on Uneven Road
,”
Int. J. Veh. Des.
,
70
(
2
), pp.
113
136
.
6.
Li
,
L.
,
Yang
,
K.
,
Jia
,
G.
,
Li
,
L.
,
Yang
,
K.
,
Jia
,
G.
,
Jia, G.
,
Ran
,
X.
,
Song
,
J.
, and
Han
,
Z.-Q.
,
2015
, “
Comprehensive Tire–Road Friction Coefficient Estimation Based on Signal Fusion Method Under Complex Maneuvering Operations
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
259
276
.
7.
Wei
,
C.
,
Olatunbosun
,
O. A.
, and
Yang
,
X.
,
2017
, “
A Finite-Element-Based Approach to Characterising FTire Model for Extended Range of Operation Conditions
,”
Veh. Syst. Dyn.
,
55
(
3
), pp.
295
312
.
8.
Pappalardo
,
C. M.
,
Wallin
,
M.
, and
Shabana
,
A. A.
,
2017
, “
A New ANCF/CRBF Fully Parameterized Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031008
.
9.
Beli
,
D.
,
Silva
,
P. B.
, and
de França Arruda
,
J. R.
,
2015
, “
Vibration Analysis of Flexible Rotating Rings Using a Spectral Element Formulation
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041003
.
10.
Alagappan
,
A. V.
,
Rao
,
K. V. N.
, and
Kumar
,
R. K.
,
2015
, “
A Comparison of Various Algorithms to Extract Magic Formula Tyre Model Coefficients for Vehicle Dynamics Simulations
,”
Veh. Syst. Dyn.
,
53
(
2
), pp.
154
178
.
11.
Li
,
J.
,
Zhang
,
Y.
, and
Yi
,
J.
,
2013
, “
A Hybrid Physical-Dynamic Tire/Road Friction Model
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011007
.
12.
Matsubara
,
M.
,
Tajiri
,
D.
,
Ise
,
T.
,
Matsubara
,
M.
,
Tajiri
,
D.
,
Ise
,
T.
, and
Kawamura
,
S.
,
2017
, “
Vibrational Response Analysis of Tires Using a Three-Dimensional Flexible Ring-Based Model
,”
J. Sound Vib.
,
408
, pp.
368
382
.
13.
Dai Vu
,
T.
,
Duhamel
,
D.
,
Abbadi
,
Z.
,
Dai Vu
,
T.
,
Duhamel
,
D.
,
Abbadi
,
Z.
,
Yin
,
H. P.
, and
Gaudin
,
A.
,
2017
, “
A Nonlinear Circular Ring Model With Rotating Effects for Tire Vibrations
,”
J. Sound Vib.
,
388
, pp.
245
271
.
14.
Wang
,
C.
,
Ayalew
,
B.
,
Rhyne
,
T.
,
Wang
,
C.
,
Ayalew
,
B.
,
Rhyne
,
T.
,
Cron
,
S.
, and
Dailliez
,
B.
,
2015
, “
Static Analysis of a Thick Ring on a Unilateral Elastic Foundation
,”
Int. J. Mech. Sci.
,
101
, pp.
429
436
.
15.
Wang
,
C.
,
Ayalew
,
B.
,
Rhyne
,
T.
,
Wang
,
C.
,
Ayalew
,
B.
,
Rhyne
,
T.
,
Cron
,
S.
, and
Dailliez
,
B.
,
2016
, “
Forced In-Plane Vibration of a Thick Ring on a Unilateral Elastic Foundation
,”
J. Sound Vib.
,
380
, pp.
279
294
.
16.
Zhou
,
F.
,
Yu
,
T. X.
, and
Yang
,
L.
,
2012
, “
Elastic Behavior of Ring-on-Foundation
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
38
47
.
17.
Krylov
,
V. V.
, and
Gilbert
,
O.
,
2010
, “
On the Theory of Standing Waves in Tyres at High Vehicle Speeds
,”
J. Sound Vib.
,
329
(
21
), pp.
4398
4408
.
18.
Liu
,
Z.
, and
Gao
,
Q.
,
2018
, “
Development and Parameter Identification of the Flexible Beam on Elastic Continuous Tire Model for a Heavy-Loaded Radial Tire
,”
J. Vib. Control
,
24
(
22
), pp.
5233
5248
.
19.
Lecomte
,
C.
,
Graham
,
W. R.
, and
Dale
,
M.
,
2010
, “
A Shell Model for Tyre Belt Vibrations
,”
J. Sound Vib.
,
329
(
10
), pp.
1717
1742
.
20.
Noga
,
S.
,
Bogacz
,
R.
, and
Markowski
,
T.
,
2014
, “
Vibration Analysis of a Wheel Composed of a Ring and a Wheel-Plate Modelled as a Three-Parameter Elastic Foundation
,”
J. Sound Vib.
,
333
(
24
), pp.
6706
6722
.
21.
Pinnington
,
R. J.
,
2006
, “
A Wave Model of a Circular Tyre. Part 2: Side-Wall and Force Transmission Modelling
,”
J. Sound Vib.
,
290
(
1–2
), pp.
133
168
.
22.
Graham
,
W. R.
,
2013
, “
Modelling the Vibration of Tyre Sidewalls
,”
J. Sound Vib.
,
332
(
21
), pp.
5345
5374
.
This content is only available via PDF.
You do not currently have access to this content.