This paper introduces mechanical networks as a tool for modeling complex unidirectional vibrations. Networks of this type have branches containing massless linear springs and dampers, with masses at the nodes. Tree and ladder configurations are examples demonstrating that the overall dynamics of infinite systems can be represented using implicitly defined integro-differential operators. Results from the proposed models compare well to numerical results from finite systems, so this approach may have advantages over high-order differential equations.

References

References
1.
Roemer
,
M. J.
, and
Kacprzynski
,
G. J.
,
2000
, “
Advanced Diagnostics and Prognostics for Gas Turbine Engine Risk Assessment
,”
IEEE
Aerospace Conference, Big Sky, MT, Mar. 25, pp.
345
353
.
2.
Goumas
,
S. K.
,
Zervakis
,
M. E.
, and
Stavrakakis
,
G. S.
,
2002
, “
Classification of Washing Machines Vibration Signals Using Discrete Wavelet Analysis for Feature Extraction
,”
IEEE Trans. Instrum. Meas.
,
51
(
3
), pp.
497
508
.
3.
Altintas
,
Y.
,
Brecher
,
C.
,
Weck
,
M.
, and
Witt
,
S.
,
2005
, “
Virtual Machine Tool
,”
CIRP Ann.-Manuf. Technol.
,
54
(
2
), pp.
115
138
.
4.
Türkay
,
S.
, and
Akçay
,
H.
,
2005
, “
A Study of Random Vibration Characteristics of The Quarter-Car Model
,”
J. Sound Vib.
,
282
(
1–2
), pp.
111
124
.
5.
Murphy
,
K.
,
Hunt
,
G.
, and
Almond
,
D. P.
,
2006
, “
Evidence of Emergent Scaling in Mechanical Systems
,”
Philos. Mag.
,
86
(
21–22
), pp.
3325
3338
.
6.
Zhai
,
C.
,
Hanaor
,
D.
, and
Gan
,
Y.
,
2017
, “
Universality of the Emergent Scaling in Finite Random Binary Percolation Networks
,”
PLoS One
,
12
(
2
), p. e0172298.
7.
Zemanian
,
A. H.
,
1991
,
Infinite Electrical Networks
,
Cambridge University Press
,
Cambridge, UK
.
8.
Alastruey
,
J.
,
Parker
,
K.
,
Peiró
,
J.
, and
Sherwin
,
S.
,
2009
, “
Analysing the Pattern of Pulse Waves in Arterial Networks: A Time-Domain Study
,”
J. Eng. Math.
,
64
(
4
), pp.
331
351
.
9.
Flores
,
J.
,
Alastruey
,
J.
, and
Corvera
,
P. E.
,
2016
, “
A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
3047
3068
.
10.
Kelly
,
J. F.
, and
McGough
,
R. J.
,
2009
, “
Fractal Ladder Models and Power Law Wave Equations
,”
J. Acoust. Soc. Am.
,
126
(
4
), pp.
2072
2081
.
11.
Ionescu
,
C. M.
,
Tenreiro Machado
,
J.
, and
De Keyser
,
R.
,
2011
, “
Modeling of the Lung Impedance Using a Fractional-Order Ladder Network With Constant Phase Elements
,”
IEEE Trans. Biomed. Circuits Syst.
,
5
(
1
), pp.
83
89
.
12.
Cao
,
J.
,
Xue
,
S.
,
Lin
,
J.
, and
Chen
,
Y.
,
2013
, “
Nonlinear Dynamic Analysis of a Cracked Rotor-Bearing System With Fractional Order Damping
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
) p. 031008.
13.
Di Paola
,
M.
,
Failla
,
G.
, and
Zingales
,
M.
,
2009
, “
Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory
,”
J. Elast.
,
97
(
2
), pp.
103
130
.
14.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Zingales
,
M.
,
2013
, “
Fractional Differential Equations and Related Exact Mechanical Models
,”
Comput. Math. Appl.
,
66
(
5
), pp.
608
620
.
15.
Goodwine
,
B.
,
2014
, “
Modeling a Multi-Robot System With Fractional-Order Differential Equations
,”
IEEE
International Conference on Robotics and Automation
(ICRA), Hong Kong, China, May 31–June 7, pp.
1763
1768
.
16.
Leyden
,
K.
, and
Goodwine
,
B.
,
2016
, “
Using Fractional-Order Differential Equations for Health Monitoring of a System of Cooperating Robots
,”
IEEE
International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
366
371
.
17.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
18.
Ortigueira
,
M. D.
, and
Tenreiro Machado
,
J.
,
2015
, “
What is a Fractional Derivative?
,”
J. Comput. Phys.
,
293
, pp.
4
13
.
19.
Tarasov
,
V. E.
,
2011
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
,
Springer Science & Business Media, Berlin
.
20.
Heymans
,
N.
, and
Bauwens
,
J.
,
1994
, “
Fractal Rheological Models and Fractional Differential Equations for Viscoelastic Behavior
,”
Rheol. Acta
,
33
(
3
), pp.
210
219
.
21.
Schiessel
,
H.
,
Friedrich
,
C.
, and
Blumen
,
A.
,
2000
, “
Applications to Problems in Polymer Physics and Rheology
,”
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
, pp.
331
376
.
22.
Silva
,
M. F.
,
Machado
,
J. T.
, and
Lopes
,
A.
,
2004
, “
Fractional Order Control of a Hexapod Robot
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
417
433
.
23.
Delavari
,
H.
,
Lanusse
,
P.
, and
Sabatier
,
J.
,
2013
, “
Fractional Order Controller Design for a Flexible Link Manipulator Robot
,”
Asian J. Control
,
15
(
3
), pp.
783
795
.
24.
Chen
,
Y.
, and
Moore
,
K. L.
,
2002
, “
Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
191
200
.
25.
Zhao
,
C.
,
Xue
,
D.
, and
Chen
,
Y.
,
2005
, “
A Fractional Order PID Tuning Algorithm for a Class of Fractional Order Plants
,”
IEEE
International Conference on Mechatronics & Automation
,
Niagara Falls, ON, Canada
,
July 29–Aug. 1
, pp.
216
221
.
26.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Feliu
,
V.
, and
Chen
,
Y.
,
2008
, “
Tuning and Auto-Tuning of Fractional Order Controllers for Industry Applications
,”
Control Eng. Pract.
,
16
(
7
), pp.
798
812
.
27.
Cao
,
Y.
, and
Ren
,
W.
,
2010
, “
Distributed Formation Control for Fractional-Order Systems: Dynamic Interaction and Absolute/Relative Damping
,”
Syst. Control Lett.
,
59
(
3–4
), pp.
233
240
.
28.
Cao
,
Y.
,
Li
,
Y.
,
Ren
,
W.
, and
Chen
,
Y. Q.
,
2010
, “
Distributed Coordination of Networked Fractional-Order Systems
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
40
(
2
), pp.
362
370
.
29.
Machado
,
J. T.
,
Kiryakova
,
V.
, and
Mainardi
,
F.
,
2011
, “
Recent History of Fractional Calculus
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1140
1153
.
30.
Karsai
,
G.
, and
Sztipanovits
,
J.
,
2008
, “
Model-Integrated Development of Cyber-Physical Systems
,”
Software Technologies for Embedded and Ubiquitous Systems
, Springer, Berlin, pp.
46
54
.
31.
Lee
,
E. A.
,
2010
, “
CPS Foundations
,”
47th ACM/IEEE Design Automation Conference
, Anaheim, CA, June 13–18, pp.
737
742
.
32.
Derler
,
P.
,
Lee
,
E. A.
, and
Vincentelli
,
A. S.
,
2012
, “
Modeling Cyber–Physical Systems
,”
Proc. IEEE
,
100
(
1
), pp.
13
28
.
33.
O'Connor
,
W.
, and
Lang
,
D.
,
1998
, “
Position Control of Flexible Robot Arms Using Mechanical Waves
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
3
), pp.
334
339
.
34.
Leyden
,
K.
,
Sen
,
M.
, and
Goodwine
,
B.
,
2018
, “
Models From an Implicit Operator Describing a Large Mass-Spring-Damper Network
,”
IFAC-PapersOnLine
,
51
(
2
), pp.
831
836
.
You do not currently have access to this content.