The main technical challenge in decentralized control of modular and reconfigurable robots (MRRs) with torque sensor is related to the treatment of interconnection term and friction term. This paper proposed a modified adaptive sliding mode decentralized control strategy for trajectory tracking control of the MRRs. The radial basis function (RBF) neural network is used as an effective learning method to approximate the interconnection term and friction term, eliminating the effect of model uncertainty and reducing the controller gain. In addition, in order to provide faster convergence and higher precision control, the terminal sliding mode algorithm is introduced to the controller design. Based on the Lyapunov method, the stability of the MRRs is proved. Finally, experiments are performed to confirm the effectiveness of the method.

References

References
1.
Harada
,
K.
,
Oetomo
,
D.
,
Susilo
,
E.
,
Menciassi
,
A.
,
Daney
,
D.
,
Merlet
,
J.
, and
Dario
,
P.
,
2010
, “
A Reconfigurable Modular Robotic Endoluminal Surgical System: Vision and Preliminary Results
,”
Robotica
,
28
(
2
), pp.
171
183
.
2.
Cobos-Guzman
,
S.
,
Torres
,
J.
, and
Lozano
,
R.
,
2013
, “
Design of an Underwater Robot Manipulator for a Telerobotic System
,”
Robotica
,
31
(
6
), pp.
945
953
.
3.
Roehr
,
T. M.
, and
Kirchner
,
F.
,
2013
, “
Reconfigurable Integrated Multirobot Exploration System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration
,”
J. Field Rob.
,
31
(
1
), pp.
3
34
.
4.
Yoo
,
S. S.
,
Rama
,
S.
,
Szewczyk
,
B.
,
Pui
,
J. W. Y.
,
Lee
,
W.
, and
Kim
,
L.
,
2015
, “
Endoscopic Capsule Robots Using Reconfigurable Modular Assembly: A Pilot Study
,”
Int. J. Imaging Syst. Technol.
,
24
(
4
), pp.
359
365
.
5.
Biglarbegian
,
M.
,
Melek
,
W. W.
, and
Mendel
,
J. M.
,
2011
, “
Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: Theory and Experiments
,”
IEEE Trans. Ind. Electron.
,
58
(
4
), pp.
1371
1384
.
6.
Kasprzak
,
W.
,
Szynkiewicz
,
W.
,
Zlatanov
,
D.
, and
Zielinska
,
T.
,
2014
, “
A Hierarchical CSP Search for Path Planning of Cooperating Self-Reconfigurable Mobile Fixtures
,”
Eng. Appl. Artif. Intell.
,
34
(
9
), pp.
85
98
.
7.
Xu
,
Q.
,
2013
, “
Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
663
673
.
8.
Pham
,
C. V.
, and
Wang
,
Y. N.
,
2015
, “
Robust Adaptive Trajectory Tracking Sliding Mode Control Based on Neural Networks for Cleaning and Detecting Robot Manipulators
,”
J. Intell. Rob. Syst.
,
79
(
1
), pp.
101
114
.
9.
Angelini
,
F.
,
Santina
,
C. D.
,
Garabini
,
M.
,
Bianchi
,
M.
,
Gasparri
,
G. M.
,
Grioli
,
G.
,
Catalano
,
M. G.
, and
Bicchi
,
A.
,
2018
, “
Decentralized Trajectory Tracking Control for Soft Robots Interacting With the Environment
,”
IEEE Trans. Rob.
,
34
(4), pp. 924–935.
10.
Li
,
X.
, and
Ercan
,
M. F.
,
2018
, “
Decentralized Coordination Control for a Network of Mobile Robotic Sensors
,”
Wireless Pers. Commun.
,
102
(
4
), pp.
2429
2442
.
11.
Zhou
,
F.
,
Li
,
Y.
, and
Liu
,
G.
,
2017
, “
Robust Decentralized Force/Position Fault-Tolerant Control for Constrained Reconfigurable Manipulators Without Torque Sensing
,”
Nonlinear Dyn.
,
89
(
2
), pp.
955
969
.
12.
Dong
,
B.
,
Liu
,
K.
, and
Li
,
Y.
,
2017
, “
Decentralized Control of Harmonic Drive Based Modular Robot Manipulator Using Only Position Measurements: Theory and Experimental Verification
,”
J. Intell. Rob. Syst.
,
88
(
1
), pp.
3
18
.
13.
He
,
W.
,
Chen
,
Y.
, and
Zhao
,
Y.
,
2016
, “
Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints
,”
IEEE Trans. Cybern.
,
46
(
3
), pp.
620
629
.
14.
He
,
W.
,
Dong
,
Y.
, and
Sun
,
C.
,
2016
, “
Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
46
(
3
), pp.
334
344
.
15.
Lu
,
H.
,
Zhang
,
X.
, and
Huang
,
X.
,
2017
, “
Robust Adaptive Control of Antagonistic Tendon-Driven Joint in the Presence of Parameter Uncertainties and External Disturbances
,”
ASME. J. Dyn. Sys., Meas., Control
,
139
(
10
), p. 101003.
16.
Wang
,
Y.
,
Xu
,
L.
, and
Wu
,
H.
,
2018
, “
Adaptive Robust Backstepping Output Tracking Control for a Class of Uncertain Nonlinear Systems Using Neural Network
,”
ASME. J. Dyn. Sys., Meas., Control
,
140
(
7
), p. 071014.
17.
Sun
,
C.
,
He
,
W.
,
Ge
,
W.
, and
Chang
,
C.
,
2017
, “
Adaptive Neural Network Control of Biped Robots
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
47
(
2
), pp.
1
12
.
18.
Zhong-Qiang
,
W. U.
,
Zhuang
,
S. Y.
,
Bao-Ming
,
M. A.
, and
Xiao
,
C. J.
,
2011
, “
Research on Adaptive Fuzzy Sliding Mode Control for Grid-Connected Inverter Based on Inverse System
,”
Power Syst. Prot. Control
,
39
(
24
), pp.
1
7
.
19.
Wu
,
D.
,
Chen
,
M.
, and
Gong
,
H.
,
2018
, “
Adaptive Neural Flight Control for an Aircraft With Time-Varying Distributed Delays
,”
Neurocomputing
,
307
, pp.
130
145
.
20.
Wei
,
H.
,
Huang
,
H.
, and
Ge
,
S. S.
,
2017
, “
Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints
,”
Neurocomputing
,
47
(
10
), pp.
3136
3147
.
21.
Yang
,
H.
, and
Liu
,
J.
,
2018
, “
An Adaptive RBF Neural Network Control Method for a Class of Nonlinear Systems
,”
IEEE/CAA J. Autom. Sin.
,
5
(
2
), pp.
457
462
.
22.
Kali
,
Y.
,
Saad
,
M.
,
Benjelloun
,
K.
, and
Benbrahim
,
M.
,
2017
, “
Sliding Mode With Time Delay Control for Robot Manipulators
,” IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, Nov. 2–4, pp.
135
156
.
23.
Van Tran
,
T.
,
Wang
,
Y.
,
Ao
,
H.
, and
Khac Truong
,
T.
,
2015
, “
Sliding Mode Control Based on Chemical Reaction Optimization and Radial Basis Functional Link Net for De-Icing Robot Manipulator
,”
ASME. J. Dyn. Sys., Meas., Control
,
137
(
5
), p. 051009.
24.
Jung
,
S.
,
2018
, “
Improvement of Tracking Control of a Sliding Mode Controller for Robot Manipulators by a Neural Network
,”
Int. J. Control Autom. Syst.
,
16
(
2
), pp.
937
943
.
25.
Wang
,
Z.
,
Su
,
Y.
, and
Zhang
,
L.
,
2017
, “
A New Nonsingular Terminal Sliding Mode Control for Rigid Spacecraft Attitude Tracking
,”
ASME. J. Dyn. Sys., Meas., Control
,
140
(
5
), p. 051006.
26.
Zhang
,
F.
,
2017
, “
High-Speed Nonsingular Terminal Switched Sliding Mode Control of Robot Manipulators
,”
IEEE/CAA J. Autom. Sin.
,
4
(
4
), pp.
775
781
.
27.
Ma
,
Z.
, and
Sun
,
G.
,
2017
, “
Dual Terminal Sliding Mode Control Design for Rigid Robotic Manipulator
,”
J. Franklin Inst.
,
355
(
18
), pp.
9127
9149
.
28.
Yang
,
Y.
,
2018
, “
A Time-Specified Nonsingular Terminal Sliding Mode Control Approach for Trajectory Tracking of Robotic Airships
,”
Nonlinear Dyn.
,
92
(
3
), pp.
1359
1367
.
29.
Liu
,
G.
,
Abdul
,
S.
, and
Goldenberg
,
A.
,
2008
, “
Distributed Control of Modular and Reconfigurable Robot With Torque Sensing
,”
Robotica
,
26
(
1
), pp.
75
84
.
30.
Imura
,
J.
,
Sugie
,
T.
,
Yokokohji
,
Y.
,
Jun-ichi
,
I.
,
Toshiharu
,
S.
,
Yasuyoshi
,
Y.
, and
Tsuneo
,
Y.
,
1991
, “
Robust Control of Robot Manipulators Based on Joint Torque Sensor Information
,”
Int. J. Robot. Res.
,
13
(
5
), pp.
434
442
.
31.
Liu
,
G.
,
2002
, “
Decomposition-Based Friction Compensation of Mechanical Systems
,”
Mechatronics
,
12
(
5
), pp.
755
769
.
32.
Liu
,
G.
, and
Goldenberg
,
A. A.
,
1997
, “
Robust Control of Robot Manipulators Based on Dynamics Decomposition
,”
IEEE Trans. Rob. Autom.
,
1
(
5
), pp.
783
789
.
33.
Liu
,
G.
, and
Goldenberg
,
A. A.
,
1996
, “
Uncertainty Decomposition-Based Robust Control of Robot Manipulators
,”
IEEE Trans. Control Syst. Technol.
,
4
(
4
), pp.
384
93
.
34.
Liu
,
G.
, and
Goldenberg
,
A. A.
,
1996
, “
Comparative Study of Robust Saturation Control of Robot Manipulators: Analysis and Experiments
,”
Int. J. Rob. Res.
,
15
(
5
), pp.
473
491
.
You do not currently have access to this content.