Many dynamic systems of practical interest have inherent time delays and thus are governed by delay differential equations (DDEs). Because DDEs are infinite dimensional, time-delayed systems may be difficult to stabilize using traditional controller design strategies. We apply the Galerkin approximation method using a new pseudo-inverse-based technique for embedding the boundary conditions, which results in a simpler mathematical derivation than has been presented previously. We then use the pole placement technique to design closed-loop feedback gains that stabilize time-delayed systems and verify our results through comparison to those reported in the literature. Finally, we perform experimental validation by applying our method to stabilize a rotary inverted pendulum system with inherent sensing delays as well as additional time delays that are introduced deliberately. The proposed approach is easily implemented and performs at least as well as existing methods.

References

References
1.
Richard
,
J.-P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.
2.
Balachandran
,
B.
,
2001
, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
793
819
.
3.
Van Wiggeren
,
G. D.
, and
Roy
,
R.
,
1998
, “
Communication With Chaotic Lasers
,”
Science
,
279
(
5354
), pp.
1198
1200
.
4.
Nise
,
N. S.
,
2000
,
Control Systems Engineering
,
3rd ed.
,
Wiley
,
New York
.
5.
Insperger
,
T.
, and
Stépán
,
G.
,
2007
, “
Act-and-Wait Control Concept for Discrete-Time Systems With Feedback Delay
,”
IET Control Theory Appl.
,
1
(
3
), pp.
553
557
.
6.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
,
Time-Delay Systems: Analysis and Control Using the Lambert W Function
,
World Scientific
,
Hackensack, NJ
.
7.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, “
Eigenvalue Assignment Via the Lambert W Function for Control of Time-Delay Systems
,”
J. Vib. Control
,
16
(
7–8
), pp.
961
982
.
8.
Lavaei
,
J.
,
Sojoudi
,
S.
, and
Murray
,
R. M.
,
2010
, “
Simple Delay-Based Implementation of Continuous-Time Controllers
,”
American Control Conference
(
ACC
),
Baltimore, MD
,
June 30–July 2
, pp.
5781
5788
.
9.
Orosz
,
G.
,
Moehlis
,
J.
, and
Murray
,
R. M.
,
2010
, “
Controlling Biological Networks by Time-Delayed Signals
,”
Philos. Trans. R. Soc. A
,
368
(
1911
), pp.
439
454
.
10.
Bekiaris-Liberis
,
N.
,
Jankovic
,
M.
, and
Krstic
,
M.
,
2013
, “
Adaptive Stabilization of LTI Systems With Distributed Input Delay
,”
Int. J. Adapt. Control Signal Process.
,
27
(
1–2
), pp.
46
65
.
11.
Michiels
,
W.
,
Engelborghs
,
K.
,
Vansevenant
,
P.
, and
Roose
,
D.
,
2002
, “
Continuous Pole Placement for Delay Equations
,”
Automatica
,
38
(
5
), pp.
747
761
.
12.
Michiels
,
W.
,
Vyhlídal
,
T.
, and
Zítek
,
P.
,
2010
, “
Control Design for Time-Delay Systems Based on Quasi-Direct Pole Placement
,”
J. Process Control
,
20
(
3
), pp.
337
343
.
13.
Vyhlídal
,
T.
,
Michiels
,
W.
, and
McGahan
,
P.
,
2010
, “
Synthesis of Strongly Stable State-Derivative Controllers for a Time-Delay System Using Constrained Non-Smooth Optimization
,”
IMA J. Math. Control Inf.
,
27
(
4
), pp.
437
455
.
14.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Eigenvalue Assignment for Control of Time-Delay Systems Via the Generalized Runge–Kutta Method
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
091003
.
15.
Burke
,
J. V.
,
Lewis
,
A. S.
, and
Overton
,
M. L.
,
2005
, “
A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization
,”
SIAM J. Optim.
,
15
(
3
), pp.
751
779
.
16.
Vanbiervliet
,
J.
,
Verheyden
,
K.
,
Michiels
,
W.
, and
Vandewalle
,
S.
,
2008
, “
A Nonsmooth Optimisation Approach for the Stabilisation of Time-Delay Systems
,”
ESAIM: Control, Optim. Calculus Var.
,
14
(
3
), pp.
478
493
.
17.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2013
, “
Proportional-Integral Control of First-Order Time-Delay Systems Via Eigenvalue Assignment
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1586
1594
.
18.
Wei
,
F.
,
Bachrathy
,
D.
,
Orosz
,
G.
, and
Ulsoy
,
A. G.
,
2014
, “
Spectrum Design Using Distributed Delay
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
234
246
.
19.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
215
223
.
20.
Jarlebring
,
E.
, and
Damm
,
T.
,
2007
, “
The Lambert W Function and the Spectrum of Some Multidimensional Time-Delay Systems
,”
Automatica
,
43
(
12
), pp.
2124
2128
.
21.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2007
, “
Survey on Analysis of Time Delayed Systems Via the Lambert W Function
,”
Dyn. Contin., Discrete Impulsive Syst., Ser. A: Math. Anal.
,
14
(
S2
), pp.
296
301
.
22.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Asymptotics for the Characteristic Roots of Delayed Dynamic Systems
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
475
483
.
23.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximations for Higher Order Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031004
.
24.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061024
.
25.
Kalmár-Nagy
,
T.
,
2009
, “
Stability Analysis of Delay-Differential Equations by the Method of Steps and Inverse Laplace Transform
,”
Differ. Equations Dyn. Syst.
,
17
(
1–2
), pp.
185
200
.
26.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
27.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), pp.
80
87
.
28.
Butcher
,
E. A.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabo
,
Z.
,
2004
, “
Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
895
922
.
29.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2005
, “
Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations
,”
SIAM J. Sci. Comput.
,
27
(
2
), pp.
482
495
.
30.
Wu
,
Z.
, and
Michiels
,
W.
,
2012
, “
Reliably Computing All Characteristic Roots of Delay Differential Equations in a Given Right Half Plane Using a Spectral Method
,”
J. Comput. Appl. Math.
,
236
(
9
), pp.
2499
2514
.
31.
Mann
,
B. P.
, and
Patel
,
B. R.
,
2010
, “
Stability of Delay Equations Written as State Space Models
,”
J. Vib. Control
,
16
(
7–8
), pp.
1067
1085
.
32.
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2011
, “
A Spectral Element Approach for the Stability of Delay Systems
,”
Int. J. Numer. Methods Eng.
,
87
(
6
), pp.
566
592
.
33.
Sun
,
J.-Q.
,
2009
, “
A Method of Continuous Time Approximation of Delayed Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
998
1007
.
34.
Song
,
B.
, and
Sun
,
J.-Q.
,
2011
, “
Lowpass Filter-Based Continuous-Time Approximation of Delayed Dynamical Systems
,”
J. Vib. Control
,
17
(
8
), pp.
1173
1183
.
35.
Koto
,
T.
,
2004
, “
Method of Lines Approximations of Delay Differential Equations
,”
Comput. Math. Appl.
,
48
(
1–2
), pp.
45
59
.
36.
Engelborghs
,
K.
, and
Roose
,
D.
,
2002
, “
On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
629
650
.
37.
Vyasarayani
,
C. P.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.
38.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021011
.
39.
Sadath
,
A.
, and
Vyasarayani
,
C. P.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061008
.
40.
Vyhlídal
,
T.
, and
Zítek
,
P.
,
2014
, “
QPmR—Quasi-Polynomial Root-Finder: Algorithm Update and Examples
,”
Delay Systems: From Theory to Numerics and Applications. Advances in Delays and Dynamics
,
T.
Vyhlídal
,
J.-F.
Lafay
, and
R.
Sipahi
, eds. Vol.
1
,
Springer
, Cham, Switzerland.
41.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2015
,
Stability of Linear Delay Differential Equations: A Numerical Approach With MATLAB
,
Springer
,
New York
.
42.
Apkarian
,
J.
,
Lévis
,
M.
, and
Martin
,
P.
,
2016
, “
Instructor Workbook: QUBE-Servo 2 Experiment for MATLAB/Simulink Users
,” Quanser, Markham, ON, Canada, Report No. v 1.0.
43.
Apkarian
,
J.
,
Karam
,
P.
, and
Lévis
,
M.
,
2012
, “
Student Workbook: Inverted Pendulum Experiment for LabVIEW Users
,” Quanser, Markham, ON, Canada, Report No. v 1.1.
You do not currently have access to this content.