Accurate path scouting control of an autonomous agricultural robot is substantially influenced by terrain variability, field patterns, and uncertainties in sensed information. Based on conventional farming techniques, the targeted test crop of strawberries grows in semi-structured environments. Thus in this study, the proposed scouting control architecture comprises of three distinct portions and in each portion different sensors are used. Based on range finder (RF) information, the first region uses a proportional-integral-derivative (PID) controller with logic steps to account for undesirable pop-up events. In the other two portions, vision-based robust controllers are developed, in which a new bound is derived for the focal length uncertainty in vision. Stabilities of the controllers are proven and the reachabilities are analyzed to guarantee that the final state of each portion is within a desired initial region of the next portion controller. The proposed multiphase scouting control is successfully validated for our custom-designed robot in a commercial strawberry farm.

References

References
1.
Mortan
,
M.
,
Ratui
,
P.
,
Veres
,
V.
, and
Baciu
,
L.
,
2016
, “
A Global Analysis of Agricultural Labor Force
,”
Managerial Challenges Contemp. Soc.
,
9
(
1
), p.
57
.
2.
Bruinsma
,
J.
,
2003
,
World Agriculture: Towards 2015/2030 an FAO Perspective
,
Earthscan
,
London
.
3.
Ewing
,
L.
,
2014
, “
Strong Growth Predicted for Ground Robots Designed for Agriculture
,”
AUVSI Mission Crit., Rob. Agric. Market Emerges
,
4
(
2
), pp.
10
14
.
4.
Pedersen
,
S. M.
,
Fountas
,
S.
,
Have
,
H.
, and
Blackmore
,
B. S.
,
2006
, “
Agricultural Robots-System Analysis and Economic Feasibility
,”
Precis. Agric.
,
7
(
4
), pp.
295
308
.
5.
Defterli
,
S. G.
,
Xu
,
Y.
,
Shi
,
Y.
, and
Ehsani
,
R.
,
2016
, “
Review of Robotic Technology for Strawberry Production
,”
Am. Soc. Agric. Biol. Eng.-Appl. Eng. Agr
.
32
(
3
), pp.
301
318
.
6.
Garcia
,
C. A.
, and
Xu
,
Y.
,
2017
, “
Multitarget Geolocation Via an Agricultural Octorotor Based on Orthographic Projection and Data Association
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
11
), pp.
2076
2090
.
7.
Li
,
M.
,
Imou
,
K.
,
Wkabayashi
,
K.
, and
Yokoyama
,
S.
,
2009
, “
Review of Research on Agricultural Vehicle Autonomous Guidance
,”
Int. J. Agr. Bio. Eng.
,
2
(
3
), pp.
1
16
.
8.
Hiremath
,
S. A.
,
Van Der Heijden
,
G. W. A. M.
,
Van Evert
,
F. K.
,
Stein
,
A.
, and
Ter Braak
,
C. J. F.
,
2014
, “
Laser Range Finder Model for Autonomous Navigation of a Robot in a Maize Field Using a Particle Filter
,”
Comput. Electron. Agric
,
100
, pp.
41
51
.
9.
O'Connor
,
M.
,
Bell
,
T.
,
Elkaim
,
G.
, and
Parkinson
,
B.
,
1996
, “
Automatic Steering of Farm Vehicles Using GPS
,”
Third International Conference on Precision Agriculture
,
Minneapolis, MN
,
June 23–26
.
10.
Nagasaka
,
Y.
,
Saito
,
H.
,
Tamaki
,
K.
,
Seki
,
M.
,
Kobayashi
,
K.
, and
Taniwaki
,
K.
,
2009
, “
An Autonomous Rice Transplanter Guided by Global Positioning System and Inertial Measurement Unit
,”
J. Field Rob.
,
26
(
6–7
), pp.
537
548
.
11.
Oksanen
,
T.
,
Linja
,
M.
, and
Visala
,
A.
,
2009
, “
Low-Cost Positioning System for Agricultural Vehicles
,”
IEEE International Symposium on Computational Intelligence in Robotics and Automation, Daejeon
,
South Korea
,
Dec. 15–18
, pp.
297
302
.
12.
Hague
,
T.
,
Marchant
,
J. A.
, and
Tillett
,
N. D.
,
2000
, “
Ground Based Sensing Systems for Autonomous Agricultural Vehicles
,”
Comput. Electron. Agric.
,
25
(
1–2
), pp.
11
28
.
13.
Joerger
,
M.
, and
Pervan
,
B.
,
2009
, “
Measurement-Level Integration of Carrier-Phase GPS and Laser-Scanner for Outdoor Ground Vehicle Navigation
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
2
), p.
021004
.
14.
Khadraoui
,
D.
,
Debain
,
C.
,
Rouveure
,
R.
,
Martinet
,
P.
,
Bonton
,
P.
, and
Gallace
,
J.
,
1998
, “
Vision-Based Control in Driving Assistance of Agricultural Vehicles
,”
Int. J. Rob. Res
,
17
(
10
), pp.
1040
1054
.
15.
Kise
,
M.
,
Zhang
,
Q.
, and
Rovira
,
M.
,
2005
, “
A Stereovision-Based Crop Row Detection Method for Tractor-Automated Guidance
,”
Biosystems Eng.
,
90
(
4
), pp.
357
367
.
16.
Wang
,
Q.
,
Zhang
,
Q.
,
Rovira
,
M.
, and
Tian
,
L.
,
2011
, “
Stereovision-Based Lateral Offset Measurement for Vehicle Navigation in Cultivated Stubble Fields
,”
Biosystems Eng.
,
109
(
4
), pp.
258
265
.
17.
Subramanian
,
V.
,
Burks
,
T. F.
, and
Arroyo
,
A. A.
,
2006
, “
Development of Machine Vision and Radar Based Autonomous Vehicle Guidance Systems for Citrus Grove Navigation
,”
Comput. Electron. Agric
,
53
(
2
), pp.
130
143
.
18.
Astrand
,
B.
, and
Baerveldt
,
A. J.
,
2005
, “
A Vision Based Row-Following System for Agricultural Field Machinery
,”
Mechatronics
,
15
(
2
), pp.
251
269
.
19.
Bakker
,
T.
,
Wouters
,
H.
,
Asselt
,
K.
,
Bontsema
,
J.
,
Tang
,
L.
,
Muller
,
J.
, and
Straten
,
G.
,
2008
, “
A Vision Based Row Detection System for Sugar Beet
,”
Comput. Electron. Agric.
,
60
(
1
), pp.
87
95
.
20.
Vincent
,
L.
, and
Destain
,
M.-F.
,
2006
, “
Application of the Hough Transform for Seed Row Localisation Using Machine Vision
,”
Biosystems Eng.
,
94
(
3
), pp.
325
336
.
21.
Marchant
,
J.
, and
Brivot
,
R.
,
1995
, “
Real-Time Tracking of Plant Rows Using a Hough Transform
,”
Real-Time Imaging
,
1
(
5
), pp.
363
371
.
22.
Ji
,
R.
, and
Qi
,
L.
,
2011
, “
Crop-Row Detection Algorithm Based on Random Hough Transform
,”
Math. Comput. Modell.
,
54
(
3–4
), pp.
1016
1020
.
23.
Jiang
,
G.
,
Wang
,
Z.
, and
Liu
,
H.
,
2015
, “
Automatic Detection of Crop Rows Based on Multi-ROIs
,”
Expert Sys. Appl.
,
45
(
5
), pp.
2429
2441
.
24.
Xue
,
J.
,
Zhang
,
L.
, and
Grift
,
T. E.
,
2012
, “
Variable Field-of-View Machine Vision Based Row Guidance of an Agricultural Robot
,”
Comput. Electron. Agric.
,
84
, pp.
85
91
.
25.
Zhang
,
T.
,
Xia
,
J.
,
Wu
,
G.
, and
Zhai
,
J.
,
2014
, “
Automatic Navigation Path Detection Method for Tillage Machines Working on High Crop Stubble Fields Based on Machine Vision
,”
Int. J. Agr. Bio. Eng.
,
7
(
4
), pp.
29
37
.
26.
Billingsley
,
J.
, and
Schoenfisch
,
M.
,
1997
, “
The Successful Development of a Vision Guidance System for Agriculture
,”
Comput. Electron. Agric.
,
16
(
2
), pp.
147
163
.
27.
Dong
,
F.
,
Heinemann
,
W.
, and
Kasper
,
R.
,
2011
, “
Development of a Row Guidance System for an Autonomous Robot for White Asparagus Harvesting
,”
Comput. Electron. Agric.
,
79
(
2
), pp.
216
225
.
28.
English
,
A.
,
Ross
,
P.
,
Ball
,
D.
, and
Corke
,
P.
,
2014
, “
Vision Based Guidance for Robot Navigation in Agriculture
,”
IEEE
International Conference on Robotics & Automation
,
Hong Kong, China
,
May 31–June 7
, pp. 1693–1698.
29.
Velasquez
,
A.
,
Higuti
,
V.
,
Milori
,
D.
,
Magalhaes
,
D.
, and
Becker
,
M.
,
2016
, “
Helvis - A Small-Scale Agricultural Mobile Robot Prototype for Precision Agriculture
,”
13th International Conference on Precision Agriculture
,
St. Louis, MO
,
July 31–Aug 4
.
30.
Bengochea-Guevara
,
J.
,
Conesa-Munoz
,
J.
,
Andujar
,
D.
, and
Ribeiro
,
A.
,
2016
, “
Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot
,”
Sensors
,
16
(
3
), p.
276
.
31.
Marcos
,
A.
,
Soria
,
C.
, and
Carelli
,
R.
,
2008
, “
Visual Servo Control of a Mobile Robot in Agriculture Environments
,”
Mech. Based Des. Struct. Mach.
,
36
(
4
), pp.
392
410
.
32.
Trygve
,
U.
,
Berge
,
T. W.
, and
Gravdahl
,
J. T.
,
2015
, “
Non-Linear Model Predictive Control for Constrained Robot Navigation in Row Crops
,”
IEEE
International Conference on Industrial Technology
,
Seville, Spain
,
Mar. 17–19
, pp.
357
362
.
33.
Kraus
,
T.
,
Ferreau
,
H. J.
,
Kayacan
,
E.
,
Ramon
,
H.
,
DeBaerdemaeker
,
J.
,
Diehl
,
M.
, and
Saeys
,
W.
,
2013
, “
Moving Horizon Estimation and Nonlinear Model Predictive Control for Autonomous Agricultural Vehicles
,”
Comput. Electron. Agric.
,
98
, pp.
25
33
.
34.
Matveev
,
A. S.
,
Hoy
,
M.
,
Katupitiya
,
J.
, and
Savkin
,
A. V.
,
2013
, “
Nonlinear Sliding Mode Control of an Unmanned Agricultural Tractor in the Presence of Sliding and Control Saturation
,”
Rob. Auton. Syst.
,
61
(
9
), pp.
973
987
.
35.
Eaton
,
R.
,
Katupitiya
,
J.
,
Pota
,
H.
, and
Siew
,
K.
,
2009
, “
Robust Sliding Mode Control of an Agricultural Tractor Under the Influence of Slip
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Singapore, July 14–17, pp.
1873
1878
.
36.
Bevly
,
D.
,
Gerdes
,
J. C.
, and
Parkinson
,
B. W.
,
2002
, “
A New Yaw Dynamic Model for Improved High Speed Control of a Farm Tractor
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
4
), pp.
659
667
.
37.
Lu
,
Q.
,
Ren
,
B.
,
Parameswaran
,
S.
, and
Zhong
,
Q. C.
,
2018
, “
Uncertainty and Disturbance Estimator-Based Robust Trajectory Tracking Control for a Quadrotor in a Global Positioning System-Denied Environment
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
3
), p.
031001
.
38.
Garcia-Perez
,
L.
,
Garcia-Alegre
,
M. C.
,
Ribeiro
,
A.
, and
Guinea
,
D.
,
2008
, “
An Agent of Behaviour Architecture for Unmanned Control of a Farming Vehicle
,”
Comput. Electron. Agric.
,
16
(
1
), pp.
39
48
.
39.
Althoff
,
M.
, and
Dolan
,
J. M.
,
2014
, “
Online Verification of Automated Road Vehicles Using Reachability Analysis
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
903
918
.
40.
Althoff
,
M.
,
Stursberg
,
O.
, and
Buss
,
M.
,
2008
, “
Reachability Analysis of Nonlinear Systems With Uncertain Parameters Using Conservative Linearization
,” 47th
IEEE
Conference on Decision and Control
,
Cancun, Mexico
,
Dec. 9–11
, pp.
4042
4048
.
41.
Gonzalez
,
R.
,
2011
, “
Robust Tube-Based Predictive Control for Mobile Robots in Off-Road Conditions
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
711
726
.
42.
Hancock
,
J.
,
2000
,
Strawberries. Temperate Fruit Crops in Warm Climate
,
Kluwer Academic Publisher
, Dordrecht, The Netherlands.
43.
Feng
,
Q.
,
Wang
,
X.
,
Zheng
,
W. G.
,
Qiu
,
Q.
, and
Jiang
,
K.
,
2012
, “
A New Strawberry Harvesting Robot for Elevated-Through Culture
,”
Int. J. Agric. Biol. Eng.
,
5
(
2
), pp.
1
8
.
44.
Hudson
,
M.
,
2014
, “
Florida Agriculture Overview and Statistics
,” Florida Agriculture By The Numbers, USDA-NASS Florida Field Office, Tallahassee, FL.
45.
Menendez-Aponte
,
P.
,
Garcia
,
C.
,
Freese
,
D.
,
Defterli
,
S. G.
, and
Xu
,
Y.
,
2016
, “
Software and Hardware Architectures in Cooperative Aerial and Ground Robots for Agricultural Disease Detection
,”
International Conference on Collaboration Technologies and Systems
,
Orlando, FL
,
Oct. 31–Nov. 4
, pp.
354
358
.
46.
Freese
,
D.
, and
Xu
,
Y.
,
2016
, “Nonlinear Robust Path Control for a Field Robot Scouting in Strawberry Orchards,”
ASME
Paper No. DSCC2017-5220.
47.
Laumond
,
J. P.
,
Sekhavat
,
S.
, and
Lamiraux
,
F.
,
1998
, “
Guidelines in Nonholonomic Motion Planning for Mobile Robots
,”
Robot Motion Planning and Control
,
Springer-Verlag
,
London
, pp.
1
53
.
48.
Li
,
N.
,
Remeikas
,
C.
,
Xu
,
Y.
,
Jayasuriya
,
S.
, and
Ehsani
,
R.
,
2015
, “
Task Assignment and Trajectory Planning Algorithm for a Class of Cooperative Agricultural Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
36
(
4
), pp.
392
410
.
49.
Xu
,
Y.
, and
Ritz
,
E.
,
2009
, “
Vision Based Flexible Beam Tip Point Control
,”
IEEE Trans. Control Syst. Tech.
,
17
(
5
), pp.
1220
1227
.
50.
Slotine
,
J. J.
, and
Li
,
W.
,
2002
,
Applied Nonlinear Control
,
Prentice Hall, Upper Saddle River
,
NJ
.
51.
Langson
,
W.
,
Chryssochoos
,
I.
,
Rakovic
,
S. V.
, and
Mayne
,
D. Q.
,
2004
, “
Robust Model Predictive Control Using Tubes
,”
Automatica
,
40
(
1
), pp.
125
133
.
52.
Althoff
,
M.
,
2016
,
CORA 2016 Manual
,
Technische Universitat Munchen
,
Garching, Germany
.
You do not currently have access to this content.