Continuous-time fractional linear systems with delays, asymmetrical bounds on control and non-negative states are considered. Hence, the stabilization problem is studied and solved. A direct Lyapunov–Krasovskii function is used leading to conditions in terms of a linear program (LP). Simulation difficulties and numerical problems raised by the use of the Mittag-Leffler expression are overcome. In fact, the obtained solution uses the fractional integration of the system dynamic. Illustrative examples are presented to show the effectiveness of the results. First, a numerical one is given to demonstrate the applicability of the obtained conditions. Second, an application on a real world example is provided to highlight the usefulness of the approach.

References

References
1.
Oustaloup
,
A.
,
1983
,
Commande CRONE
,
Hermes
,
Paris
.
2.
Rahimian
,
M. A.
, and
Tavazoei
,
M. S.
,
2013
, “
Optimal Tuning for Fractional-Order Controllers: An Integer-Order Approximating Filter Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
021017
.
3.
Chen
,
Y. Q.
,
Ahn
,
H. S.
, and
Podlubny
,
I.
,
2006
, “
Robust Stability Check of Fractional Order Linear Time Invariant Systems With Interval Uncertainties
,”
Signal Process.
,
86
(
10
), pp.
2611
2618
.
4.
Dabiri
,
A.
, and
Butcher
, E. A.
,
2017
, “
Fractional Chebyshev Collocation Method for Solving Linear Fractional-Order Delay-Differential Equations
,”
ASME
Paper No. DETC2017-68333.
5.
Efe
,
M.
,
2005
, “
Fractional Order Systems in Industrial Automation—A Survey
,”
IEEE Trans. Ind. Inf.
,
7
(
4
), pp. 582–591.
6.
Kaczorek
,
T.
,
2008
, “
Fractional Positive Continuous-Time Linear Systems and Their Reachability
,”
Int. J. App. Math. Comput. Sci.
,
18
(
2
), pp.
223
228
.
7.
Kaczorek
,
T.
,
2011
, “
Necessary and Sufficient Stability Conditions of Fractional Positive Continuous-Time Linear Systems
,”
Acta Mech. Autom.
,
5
(
2
), pp.
52
54
.
8.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J. A. T.
,
2007
,
Advances in Fractional Calculus, Theoretical Development and Applications in Physics and Engineering
,
Springer
,
London
.
9.
Vinagre
,
B. M.
,
Monje
,
C. A.
, and
Calderon
,
A. J.
,
2002
, “
Fractional Order Systems and Fractional Order Control Actions
,”
IEEE CDC Tutorial Workshop: Fractional Calculus Applications in Automatic Control and Robotics
,
Las Vegas, NV
,
Dec. 10–13
, pp.
15
38
.
10.
Nataraj
,
P. S. V.
, and
Tharewal
,
S.
,
2007
, “
On Fractional-Order QFT Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
2
), pp.
212
218
.
11.
Dadras
,
S.
,
Dadras
,
S.
, and
Momeni
,
H.
,
2017
, “
Linear Matrix Inequality Based Fractional Integral Sliding-Mode Control of Uncertain Fractional-Order Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
11
), p.
111003
.
12.
Titouche
,
K.
,
Mansouri
,
R.
,
Bettayeb
,
M.
, and
Al-Saggaf
,
U. M.
,
2016
, “
Internal Model Control–Proportional Integral Derivative–Fractional-Order Filter Controllers Design for Unstable Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
2
), p. 021006.
13.
Chekari
,
T.
,
Mansouri
,
R.
, and
Bettayeb
,
M.
,
2019
, “
Improved Internal Model Control-Proportional-Integral-Derivative Fractional-Order Multiloop Controller Design for Non Integer Order Multivariable Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
1
), p. 011014.
14.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
15.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2001
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
16.
Zhang
,
F.
,
Li
,
C.
, and
Chen
,
Y. Q.
,
2011
, “
Asymptotical Stability of Nonlinear Fractional Differential Systems With Caputo Derivatives
,”
Int. J. Differ. Equations
,
2011
, p. 635165.
17.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
18.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
,
Gallegos
,
J.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(1–3), pp.
650
659
.
19.
Berman
,
A.
,
Neumann
,
M.
, and
Stern
,
R. J.
,
1989
,
Non Negative Matrices in Dynamic Systems
,
Wiley
,
New York
.
20.
Kaczorek
,
T.
,
2002
,
Positive 1D and 2D Systems
,
Springer-Verlag
, London.
21.
De Leenheer
,
P.
, and
Aeyels
,
D.
,
2001
, “
Stabilization of Positive Linear Systems
,”
Syst. Control Lett.
,
44
(4), pp. 259–271.
22.
Gao
,
H.
,
Lam
,
J.
,
Wang
,
C.
, and
Xu
,
S.
,
2005
, “
Control for Stability and Positivity: Equivalent Conditions and Computation
,”
IEEE Trans. Circuits Syst. II
,
52
(9), pp.
540
544
.
23.
Ohta
,
Y.
,
1980
, “
Stability Criteria for Off-Diagonally Monotone Nonlinear Dynamical Systems
,”
IEEE Trans. Circuits Systs.
,
CAS-27
(
10
), pp.
956
962
.
24.
Ohta
,
Y.
,
1981
, “
Qualitative Analysis of Nonlinear Quasi-Monotone Dynamical Systems Described by Functional-Differential Equations
,”
IEEE Trans. Circuits Systs.
,
CAS-28
(
2
), pp.
138
144
.
25.
Ait Rami
,
M.
, and
Tadeo
,
F.
,
2006
, “
Linear Programming Approach to Impose Positiveness in Closed-Loop and Estimated States
,”
17th International Symposium on Mathematical Theory of Networks and Systems
, Kyoto, Japan, July 24–26.
26.
Ait Rami
,
M.
, and
Tadeo
,
F.
,
2007
, “
Controller Synthesis for Positive Linear Systems With Bounded Controls
,”
IEEE Trans. Circuits Syst. II
,
54
(
2
), pp.
151
155
.
27.
Hmamed
,
A.
,
Benzaouia
,
A.
,
Tadeo
,
F.
, and
Ait Rami
,
M.
,
2007
, “
Positive Stabilization of Discrete-Time Systems With Unknown Delay and Bounded Controls
,”
European Control Conference
(
ECC
),
Kos, Greece
,
July 2–5
.
28.
Hmamed
,
A.
,
Benzaouia
,
A.
,
Tadeo
,
F.
, and
Ait Rami
,
M.
,
2008
, “
Memoryless Control of Delayed Continuous-Time Systems Within the Nonnegative Orthant
,”
IFAC World Congress
,
Korea
,
July 6–11
.
29.
Hmamed
,
A.
,
Ait Rami
,
M.
,
Benzaouia
,
A.
, and
Tadeo
,
F.
,
2012
, “
Stabilization Under Constrained States and Controls of Positive Systems With Time Delays
,”
Eur. J. Control.
,
18
(
2
), pp.
182
190
.
30.
Benzaouia
,
A.
,
Mesquine
,
F.
,
Hmamed
,
A.
,
Benhayoun
,
M.
, and
Tadeo
,
F.
,
2014
, “
Stabilization of Continuous-Time Fractional Positive Systems by Using a Lyapunov Function
,”
IEEE Trans. Aut. Control
,
59
(
8
), pp.
2203
2208
.
31.
Hmamed
,
A.
,
Mesquine
,
F.
,
Benzaouia
,
A.
,
Benhayoun
,
M.
, and
Tadeo
,
F.
,
2013
, “
Continuous-Time Fractional Bounded Positive Systems
,”
52nd IEEE Conference on Decision and Control
(
CDC
),
Firenze, Italy
,
Dec. 10–13
, pp.
2127
2132
.
32.
Mesquine
,
F.
,
Hmamed
,
A.
,
Benhayoun
,
M.
,
Benzaouia
,
A.
, and
Tadeo
,
F.
,
2015
, “
Robust Stabilization of Constrained Uncertain Continuous-Time Fractional Positive Systems
,”
J. Franklin Inst.
,
352
(
1
), pp.
259
270
.
33.
Benzaouia
,
A.
,
Mesquine
,
F.
, and
Benhayoun
,
M.
,
2016
, “
Stabilization of Continuous-Time Fractional Positive Systems With Delays
,”
Fifth International Conference on Systems and Control
(
ICSC
),
Marrakesh, Morocco
,
May 25–27
.
34.
Kaczorek
,
T.
,
2013
, “
Stability Test of Positive Fractional Continuous-Time Linear Systems With Delays
,”
Int. J. Mar. Navig. Saf. Sea Transp.
,
7
(
2
), pp.
211
215
.
35.
Kaczorek
,
T.
,
2011
,
Selected Problems of Fractional Systems Theory
(LNCIS), Springer
, Berlin.
36.
Matignon
,
D.
,
1996
, “
Stability Results on Fractional Differential Equations With Application to Control Processing
,” Symposium on Modelling, Analysis and Simulation: CESA'96 IMACS Multiconference,
Lille, France
, July 9–12.
37.
Shen
,
J.
, and
Lam
,
J.
,
2680
, “
Stability and Performance Analysis for Positive Fractional-Order Systems With Time Varying Delays
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2676
2016
.
38.
Zhang
,
X.
,
2008
, “
Some Results of Linear Fractional Order Time-Delay System
,”
Appl. Math. Comput.
,
197
(
1
), pp.
407
411
.
39.
Mitkowski
,
W.
, and
Skruch
,
P.
,
2013
, “
Fractional-Order Models of the Supercapacitors in the Form of RC Ladder Networks
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
61
(
3
), pp.
581
587
.
You do not currently have access to this content.