Theoretical and experimental modal analyses are treated for hydraulic systems modeled by discrete capacities, inductances, resistances, and fluid lines with dynamic laminar flow. Based on an approximate multi-degrees-of-freedom description, it is shown how hydraulic natural frequencies, damping ratios, and mode shapes can be identified from measured frequency response functions between flow rate excitation and pressure response. Experiments are presented for a pipeline system that includes three side branches and an accumulator. In view of practical applications, two different types of servovalve excitation as well as impact hammer excitation are considered. Pressure is measured by 19 sensors throughout the system. Results are compared in terms of frequency response functions between 50 and 850 Hz, the first five hydraulic modes, and weighted auto modal assurance criteria of experimental mode shapes. Out of the tested excitation devices, the servovalve is clearly preferred; if valves cannot be used, the impact hammer offers a reasonable workaround. For a reduced number of five sensors, different sensor arrangements are assessed by the respective weighted auto modal assurance criteria of experimental mode shapes. A theoretical hydraulic modal model provides a similar assessment. The quality of the theoretical model is confirmed by the weighted modal assurance criterion of theoretical and experimental mode shapes from servovalve excitation.

References

References
1.
Ewins
,
D.
,
2000
,
Modal Testing: Theory, Practice and Application
,
2nd ed.
,
Research Studies Press
,
Baldock, Hertfordshire, UK
.
2.
Mikota
,
G.
,
2004
, “
Duality Applied to Experimental Modal Analysis
,”
Bath Workshop on Power Transmission and Motion Control (PTMC)
, Bath, UK, Sept. 1–3, pp.
111
122
.
3.
Mikota
,
G.
,
2013
, “
Modal Analysis of Hydraulic Pipelines
,”
J. Sound Vib.
,
332
(
16
), pp.
3794
3805
.
4.
Hametner
,
G.
, and
Scheidl
,
R.
,
2003
, “
Duality and Its Application for the Dynamic Analysis of Hydraulic Systems
,”
Bath Workshop on Power Transmission and Motion Control
(
PTMC
), Bath, UK, Sept. 10–12, pp.
65
76
.
5.
Augusztinovicz
,
F.
, and
Sas
,
P.
,
1996
, “
Acoustic Modal Analysis at Low Frequencies: Similarities and Differences in Formulations
,”
International Conference on Noise and Vibration Engineering (ISMA21)
, Leuven, Belgium, Sept. 18–20, pp.
1685
1699
.
6.
D'Souza
,
A.
, and
Oldenburger
,
R.
,
1964
, “
Dynamic Response of Fluid Lines
,”
Trans. ASME J. Basic Eng.
,
86
, pp.
589
598
.
7.
Hsue
,
C.
, and
Hullender
,
D.
,
1983
, “
Modal Approximations for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines
,”
Fluid Transmission Line Dynamics
, ASME Special Publication, New York.
8.
Yang
,
W.
, and
Tobler
,
W.
,
1991
, “
Dissipative Modal Approximation of Fluid Transmission Lines Using Linear Friction Model
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
1
), pp.
152
162
.
9.
Mäkinen
,
J.
,
Piché
,
R.
, and
Ellman
,
A.
,
2000
, “
Fluid Transmission Line Modeling Using a Variational Method
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
1
), pp.
153
162
.
10.
Ayalew
,
B.
, and
Kulakowski
,
B.
,
2005
, “
Modal Approximation of Distributed Dynamics for a Hydraulic Transmission Line With Pressure Input—Flow Rate Output Causality
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
3
), pp.
503
507
.
11.
Mikota
,
G.
,
2014
, “
A Multi-Degrees-of-Freedom Model for Hydraulic Pipeline Systems
,”
Ninth International Fluid Power Conference (IFK)
, Aachen, Germany, Mar. 24–26, pp.
510
521
.
12.
Mikota
,
G.
,
2015
, “
Low Frequency Correction of a Multi-Degrees-of-Freedom Model for Hydraulic Pipeline Systems
,”
Eighth Vienna Conference on Mathematical Modelling (MATHMOD)
, Vienna, Austria, Feb. 18–20, pp.
445
450
.
13.
Mikota
,
G.
,
2004
, “
Experimental Modal Analysis of Hydraulic Networks
,”
VDI-Schwingungstagung 2004/Modalanalyse Und Identifikation
, Wiesloch, Deutschland, May 25–26, pp.
15
26
(in German).
14.
Mikota
,
G.
,
Manhartsgruber
,
B.
,
Kogler
,
H.
, and
Hammerle
,
F.
,
2017
, “
Modal Testing of Hydraulic Pipeline Systems
,”
J. Sound Vib.
,
409
, pp.
256
273
.
15.
Nieter
,
J.
, and
Singh
,
R.
,
1982
, “
Acoustic Modal Analysis Experiment
,”
J. Acoust. Soc. Am.
,
72
(
2
), pp.
319
326
.
16.
Kung
,
C.-H.
, and
Singh
,
R.
,
1985
, “
Experimental Modal Analysis Technique for Three-Dimensional Acoustic Cavities
,”
J. Acoust. Soc. Am.
,
77
(
2
), pp.
731
738
.
17.
Yoshimura
,
T.
,
Saito
,
M.
,
Maruyama
,
S.
, and
Iba
,
S.
,
2012
, “
Modal Analysis of Automotive Cabin by Multiple Acoustic Excitation
,”
International Conference on Noise and Vibration Engineering
(
ISMA
), Leuven, Belgium, Sept. 17–19, pp.
4051
4059
.http://past.isma-isaac.be/downloads/isma2012/papers/isma2012_0553.pdf
18.
Zhang
,
Q.
,
1993
, “
Application of Modal Analysis for the Solution of Automobile Acoustical Problems at Low Frequencies
,”
J. Soc. Ing. Automob.
,
380
, pp.
44
50
(in French).
19.
Wyckaert
,
K.
,
Augusztinovicz
,
F.
, and
Sas
,
P.
,
1996
, “
Vibro-Acoustical Modal Analysis: Reciprocity, Model Symmetry, and Model Validity
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3172
3181
.
20.
Ouisse
,
M.
, and
Foltête
,
E.
,
2015
, “
Model Correlation and Identification of Experimental Reduced Models in Vibroacoustical Modal Analysis
,”
J. Sound Vib.
,
342
, pp.
200
217
.
21.
Mikota
,
G.
,
Haas
,
R.
,
Lukachev
,
E.
, and
Berger
,
W.
,
2016
, “
Experimental Modal Analysis of a Coupled Hydraulic-Mechanical System
,”
Fourth VDI-Fachtagung Schwingungsanalyse Und Identifikation 2016
, Fulda, Deutschland, Mar. 15–16, pp.
97
108
(in German).
22.
Mikota
,
G.
,
Haas
,
R.
, and
Lukachev
,
E.
,
2016
, “
Modal Analysis of Fluid-Structure Interaction in a Bent Pipeline
,”
ASME
Paper No. FPMC2016–1705.
23.
Mikota
,
G.
,
Haas
,
R.
, and
Lukachev
,
E.
,
2018
, “
Compensation of a Hydraulic Pipeline Resonance by Fluid-Structure Interaction
,”
Int. J. Fluid Power
,
19
(
1
), pp.
14
26
.
24.
Allemang
,
R.
, and
Brown
,
D.
,
1982
, “
A Correlation Coefficient for Modal Vector Analysis
,”
First International Modal Analysis Conference
, Orlando, FL, Nov. 8–10, pp.
110
116
.
25.
Allemang
,
R.
,
2003
, “
The Modal Assurance Criterion, Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
21
.http://www.sandv.com/downloads/0308alle.pdf
26.
Carne
,
T.
, and
Dohrmann
,
C.
,
1995
, “
A Modal Test Design Strategy for Model Correlation
,”
13th International Modal Analysis Conference
, New York, Feb. 13–16, pp.
927
933
.
27.
Mottershead
,
J.
, and
Friswell
,
M.
,
1993
, “
Model Updating in Structural Dynamics: A Survey
,”
J. Sound Vib.
,
167
(
2
), pp.
347
375
.
28.
Mottershead
,
J.
,
Link
,
M.
, and
Friswell
,
M.
,
2011
, “
The Sensitivity Method in Finite Element Model Updating: A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2275
2296
.
29.
Balmès
,
E.
, and
Leclère
,
J.
,
2003
,
Structural Dynamics Toolbox Version 5.1 User's Guide
,
SDTools
,
Paris, France
.
30.
Ginsberg
,
J.
,
2001
,
Mechanical and Structural Vibrations
,
Wiley
, New York.
31.
Manhartsgruber
,
B.
,
1999
, “
Application of Singular Perturbation Theory to Nonlinear Control Design for Hydraulic Servo-Drives
,” Ph.D. thesis, Johannes Kepler University Linz, Linz, Austria (in German).
You do not currently have access to this content.