In-cylinder pressure is a critical metric that is used to characterize the combustion process of engines. While this variable is measured on many laboratory test beds, in-cylinder pressure transducers are not common on production engines. As such, accurate methods of predicting the cylinder pressure have been developed both for modeling and control efforts. This work examines a cylinder-specific pressure model for a dual fuel compression ignition engine. This model links the key engine input variables to the critical engine outputs including indicated mean effective pressure (IMEP) and peak pressure. To identify the specific impact of each operating parameter on the pressure trace, a surrogate model was produced based on a functional Gaussian process (GP) regression approach. The pressure trace is modeled as a function of the operating parameters, and a two-stage estimation procedure is introduced to overcome various computational challenges. This modeling method is compared to a commercial dual fuel combustion model and shown to be more accurate and less computationally intensive.

References

References
1.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
2.
Splitter
,
D.
,
Wissink
,
M.
,
DelVescovo
,
D.
, and
Reitz
,
R.
,
2013
, “
RCCI Engine Operation Towards 60% Thermal Efficiency
,”
SAE
Paper No. 2013-01-0279.
3.
Indrajuana
,
A.
,
Bekdemir
,
C.
,
Feru
,
E.
, and
Willems
,
F.
,
2018
, “
Towards Model-Based Control of RCCI-CDF Mode-Switching in Dual Fuel Engines
,”
SAE
Paper No. 2018-01-0263.
4.
Khodadadi Sadabadi
,
K.
, and
Shahbakhti
,
M.
,
2016
, “
Dynamic Modelling and Controller Design of Combustion Phasing for an RCCI Engine
,”
ASME
Paper No. DSCC2016-9696.
5.
Indrajuana
,
A.
,
Bekdemir
,
C.
,
Luo
,
X.
, and
Willems
,
F.
,
2016
, “
Robust Multivariable Feedback Control of Natural Gas-Diesel RCCI Combustion
,”
IFAC-PapersOnLine
,
49
(
11
), pp.
217
222
.
6.
Bekdemir
,
C.
,
Baert
,
R.
,
Willems
,
F.
, and
Somers
,
B.
,
2015
, “
Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion
,”
SAE
Paper No. 2015-01-1745.
7.
Kondipati
,
N. N. T.
,
Arora
,
J. K.
,
Bidarvatan
,
M.
, and
Shahbakhti
,
M.
,
2017
, “
Modeling, Design and Implementation of a Closed-Loop Combustion Controller for an RCCI Engine
,” American Control Conference (
ACC
), May 24–26, Seattle, WA, pp.
4747
4752
.
8.
Connolly
,
F. T.
, and
Yagle
,
A. E.
,
1993
, “
Modeling and Identification of the Combustion Pressure Process in Internal Combustion Engines
,” 36th
IEEE
Midwest Symposium on Circuits and Systems, Detroit, MI, Aug. 16–18, pp.
204
207
.
9.
Shiao
,
Y.
, and
Moskwa
,
J. J.
,
1995
, “
Cylinder Pressure and Combustion Heat Release Estimation for SI Engine Diagnostics Using Nonlinear Sliding Observers
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
70
78
.
10.
Chen
,
S. X.
, and
Moskwa
,
J. J.
,
1997
, “
Application of Nonlinear Sliding-Mode Observers for Cylinder Pressure Reconstruction
,”
Control Eng. Pract.
,
5
(
8
), pp.
1115
1121
.
11.
Gao
,
Y.
, and
Randall
,
R. B.
,
1999
, “
Reconstruction of Diesel Engine Cylinder Pressure Using a Time Domain Smoothing Technique
,”
Mech. Syst. Signal Process.
,
13
(
5
), pp.
709
722
.
12.
Lee
,
B.
,
Rizzoni
,
G.
,
Guezennec
,
Y.
,
Soliman
,
A.
,
Cavalletti
,
M.
, and
Waters
,
J.
,
2001
, “
Engine Control Using Torque Estimation
,”
SAE
Paper No. 2001-01-0995.
13.
Brand
,
D.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2005
, “
Estimation of the Instantaneous In-Cylinder Pressure for Control Purposes Using Crankshaft Angular Velocity
,”
SAE Trans.
,
114
(
3
), pp.
426
437
.
14.
Liu
,
F.
,
Amaratunga
,
G. A. J.
, and
Collings
,
N.
,
2006
, “
A Fourier Analysis Based Synthetic Method for In-Cylinder Pressure Estimation
,”
SAE
Paper No. 2006-01-3425.
15.
Potenza
,
R.
,
Dunne
,
J. F.
,
Vulli
,
S.
,
Richardson
,
D.
, and
King
,
P.
,
2007
, “
Multicylinder Engine Pressure Reconstruction Using NARX Neural Networks and Crank Kinematics
,”
Int. J. Engine Res.
,
8
(
6
), pp.
499
518
.
16.
Al-Durra
,
A.
,
2012
, “
Model-Based Methodology for Estimating Engine Cylinder Pressure Imbalance for Combustion Feedback Control Applications
,”
ASME
Paper No. ICES2012-81110.
17.
Liu
,
F.
,
Amaratunga
,
G. A. J.
,
Collings
,
N.
, and
Soliman
,
A.
,
2012
, “
An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation
,”
SAE
Paper No. 2012-01-0896.
18.
Eriksson
,
L.
, and
Andersson
,
I.
,
2002
, “
An Analytic Model for Cylinder Pressure in a Four-Stroke SI Engine
,”
SAE Trans.
,
111
(
3
), pp.
726
733
.
19.
Zeng
,
P.
, and
Assanis
,
D.
,
2004
, “
Cylinder Pressure Reconstruction and Its Application to Heat Transfer Analysis
,”
SAE
Paper No. 2004-01-0922.
20.
Radziszewski
,
L.
, and
Kekez
,
M.
,
2010
, “
Application of a Genetic-Fuzzy System to Diesel Engine Pressure Modeling
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
1
9
.
21.
Weissenborn
,
E.
,
Bossmeyer
,
T.
,
Krüger
,
M.
, and
Bertram
,
T.
,
2009
, “
Data Based Cylinder Pressure Modeling for Direct-Injection Diesel Engines
,”
SAE Int. J. Engines
,
2
(
1
), pp.
569
584
.
22.
Maass
,
B.
,
Deng
,
J.
, and
Stobart
,
R.
,
2011
, “
In-Cylinder Pressure Modelling With Artificial Neural Networks
,”
SAE
Paper No. 2011-01-1417.
23.
Catania
,
A.
,
Finesso
,
R.
,
Spessa
,
E.
,
Catanese
,
A.
, and
Landsmann
,
G.
,
2011
, “
Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
2106
2123
.
24.
Hung
,
Y.
,
Joseph
,
V. R.
, and
Melkote
,
S. N.
,
2015
, “
Analysis of Computer Experiments With Functional Response
,”
Technometrics
,
57
(
1
), pp.
35
44
.
25.
Zhang
,
Y.
,
Sagalovich
,
I.
,
De Ojeda
,
W.
,
Ickes
,
A.
,
Wallner
,
T.
, and
Wickman
,
D. D.
,
2013
, “
Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels
,”
SAE Int. J. Engines
,
6
(
3
), pp.
1481
1489
.
26.
Ickes
,
A.
,
Wallner
,
T.
,
Zhang
,
Y.
, and
De Ojeda
,
W.
,
2014
, “
Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine
,”
SAE Int. J. Engines
,
7
(
2
), pp.
860
872
.
27.
Kassa
,
M.
,
Hall
,
C.
,
Ickes
,
A.
, and
Wallner
,
T.
,
2015
, “
In-Cylinder Oxygen Mass Fraction Estimation Method for Minimizing Cylinder-to-Cylinder Variations
,”
SAE
Paper No. 2015-01-0874.
28.
Jeff Wu
,
C. F.
, and
Hamada
,
M. S.
,
2011
,
Experiments: Planning, Analysis, and Optimization
,
2nd ed.
, Vol.
552
,
Wiley
, Hoboken,
NJ
.
29.
Fedorov
,
V. V.
, and
Hackl
,
P.
,
2012
,
Model-Oriented Design of Experiments
, Vol.
125
,
Springer
, Berlin.
30.
Qian
,
P. Z. G.
,
Wu
,
H.
, and
Jeff Wu
,
C. F.
,
2008
, “
Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors
,”
Technometrics
,
50
(
3
), pp.
383
396
.
31.
Zhou
,
Q.
,
Qian
,
P. Z. G.
, and
Zhou
,
S.
,
2011
, “
A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors
,”
Technometrics
,
53
(
3
), pp.
266
273
.
32.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer Science & Business Media
,
New York
.
33.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
34.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
35.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(
1
), pp.
267
288
.
36.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.
37.
Hulbert
,
M.
,
2017
, “
The Impact of Alternative Fuel Engine Performance and Emissions
,” Master's thesis, Illinois Institute of Technology, Chicago, IL.
You do not currently have access to this content.