This paper develops a new computational approach for energy management in a hydraulic hybrid vehicle. The developed algorithm, called approximate stochastic differential dynamic programming (ASDDP) is a variant of the classic differential dynamic programming algorithm. The simulation results are discussed for two Environmental Protection Agency drive cycles and one real world cycle based on collected data. Flexibility of the ASDDP algorithm is demonstrated as real-time driver behavior learning, and forecasted road grade information are incorporated into the control setup. Real-time potential of ASDDP is evaluated in a hardware-in-the-loop (HIL) experimental setup.

References

References
1.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031012
.
2.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2015
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
3.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A.
,
Kuang
,
M.
, and
Kolmanovsky
,
I.
,
2009
, “
Predictive Energy Management of a Power-Split Hybrid Electric Vehicle
,”
American Control Conference
, June 10–12, St. Louis, MO, pp. 3970–3976.
4.
Katsargyri
,
G.-E.
,
2008
, “
Optimally Controlling Hybrid Electric Vehicles Using Path Forecasting
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
5.
Hellstrom
,
E.
,
2010
, “
Look-Ahead Control of Heavy Vehicles
,” Ph.D. thesis, Linkoping University Institute of Technology, Linkoping, Sweden.
6.
Lin
,
C.-C.
,
Peng
,
H.
, and
Grizzle
,
J.
,
2004
, “
A Stochastic Control Strategy for Hybrid Electric Vehicles
,”
American Control Conference
, June 30–July 2, Boston, MA, pp.
4710
4715
.
7.
Pentland
,
A.
, and
Liu
,
A.
,
1999
, “
Modeling and Prediction of Human Behavior
,”
Neural Comput.
,
11
(
1
), pp.
229
242
.
8.
Filev
,
D. P.
, and
Kolmanovsky
,
I.
,
2010
, “
Markov Chain Modeling Approaches for on Board Applications
,”
American Control Conference
, June 30–July 2, Baltimore, MD, pp.
4139
4145
.
9.
Puterman
,
M.
,
2005
,
Markov Decision Processes: Discrete Stochastic Dynamic Programming
,
Wiley
,
New York
.
10.
Lin
,
C.-C.
,
Peng
,
H.
, and
Grizzle
,
J.
,
2002
, “
Optimization of Powertrain Operating Policy for Feasibility Assessment and Calibration: Stochastic Dynamic Programming Approach
,”
American Control Conference
, May 8–10, Anchorage, AK, pp.
1425
1430
.
11.
Tate
,
E.
, Jr.
,
Grizzle
,
J.
, and
Peng
,
H.
,
2008
, “
Shortest Path Stochastic Control for Hybrid Electric Vehicles
,”
Int. J. Robust Nonlinear Control
,
18
, pp.
1409
1429
.
12.
Kumar
,
R.
,
2010
, “
A Power Management Strategy for Hybrid Output Coupled Power-Split Transmission to Minimize Fuel Consumption
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI3453145/
13.
Bertsekas
,
D.
, and
Tsitsiklis
,
J.
,
1996
,
Neuro-Dynamic Programming
,
Athena Scientific
,
Belmont, MA
.
14.
Johri
,
R.
,
2011
, “
Neuro-Dynamic Programming and Reinforcement Learning for Optimal Energy Management of a Series Hydraulic Hybrid Vehicle Considering Engine Transient Emissions
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://core.ac.uk/download/pdf/3147869.pdf
15.
Asher
,
Z. D.
,
Baker
,
D. A.
, and
Bradley
,
T. H.
,
2017
, “
Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy
,”
IEEE Trans. Control Syst. Technol.
,
26
(6), pp. 2121–2134.
16.
Mesbah
,
A.
,
2016
, “
Stochastic Model Predictive Control: An Overview and Perspectives for Future Research
,”
IEEE Control Syst.
,
36
(
6
), pp.
30
44
.
17.
DiCairano
,
S.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I.
,
2014
, “
Stochastic MPC With Learning for Driver-Predictive Vehicle Control and Its Application to HEV Energy Management
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1018
1031
.
18.
Zeng
,
X.
, and
Wang
,
J.
,
2015
, “
A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2416
2423
.
19.
Sun
,
C.
,
Hu
,
X.
,
Moura
,
S. J.
, and
Sun
,
F.
,
2015
, “
Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
1197
1204
.
20.
Jacobson
,
D.
, and
Mayne
,
D.
,
1970
,
Differential Dynamic Programming
,
Elsevier
,
New York
.
21.
Lawler
,
G. F.
,
2006
,
Introduction to Stochastic Processes
,
CRC Press
, New York.
22.
Tassa
,
Y.
,
Erez
,
T.
, and
Smart
,
W. D.
,
2008
, “
Receding Horizon Differential Dynamic Programming
,” Advances in Neural Information Processing Systems, Curran Associates, Red Hook, NY, pp.
1465
1472
.
23.
Williams
,
K.
,
2018
, “
Real-Time Stochastic Predictive Control for Hybrid Vehicle Energy Management
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
24.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
2nd ed.
,
Springer
,
New York
.
25.
Opila
,
D. F.
,
Wang
,
X.
,
McGee
,
R.
, and
Grizzle
,
J.
,
2013
, “
Real-Time Implementation and Hardware Testing of a Hybrid Vehicle Energy Management Controller Based on Stochastic Dynamic Programming
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
2
), p.
021002
.
You do not currently have access to this content.