This paper presents a frequency domain analysis toward the robustness, convergence speed, and steady-state error for general linear time invariant (LTI) iterative learning control (ILC) for single-input-single-output (SISO) LTI systems and demonstrates the optimality of norm-optimal iterative learning control (NO-ILC) in terms of balancing the tradeoff between robustness, convergence speed, and steady-state error. The key part of designing LTI ILC updating laws is to choose the Q-filter and learning gain to achieve the desired robustness and performance, i.e., convergence speed and steady-state error. An analytical equation that characterizes these three terms for NO-ILC has been previously presented in the literature. For general LTI ILC updating laws, however, this relationship is still unknown. Adopting a frequency domain analysis approach, this paper characterizes this relationship for LTI ILC updating laws and, subsequently, demonstrates the optimality of NO-ILC in terms of balancing the tradeoff between robustness, convergence speed, and steady-state error.

References

References
1.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
2.
Longman
,
R. W.
,
2009
, “
Iterative Learning Control and Repetitive Control for Engineering Practice
,”
Int. J. Control
,
73
(
10
), pp.
930
954
.
3.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2008
, “
A Cross-Coupled Iterative Learning Control Design for Precision Motion Control
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1218
1231
.
4.
Janssens
,
P.
,
Pipeleers
,
G.
, and
Swevers
,
J.
,
2013
, “
A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
546
551
.
5.
Wang
,
Z.
,
Pannier
,
C. P.
,
Ojeda
,
L.
,
Barton
,
K. L.
, and
Hoelzle
,
D. J.
,
2016
, “
An Application of Spatial Iterative Learning Control to Micro-Additive Manufacturing
,”
American Control Conference
, Boston, MA, July 6–8, pp.
354
395
.
6.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2011
, “
A Norm Optimal Approach to Time Varying ILC With Application to a Multi-Axis Robotic Testbed
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
166
180
.
7.
Gunnarsson
,
S.
, and
Norrlof
,
M.
,
2001
, “
On the Design of ILC Algorithms Using Optimization
,”
Automatica
,
37
(
12
), pp.
2011
2016
.
8.
Norrlof
,
M.
, and
Gunnarsson
,
S.
,
2002
, “
Time and Frequency Domain Convergence Properties in Iterative Learning Control
,”
Int. J. Control
,
75
(
14
), pp.
1114
1126
.
9.
Gorinevsky
,
D.
,
2002
, “
Loop Shaping for Iterative Control of Batch Processes
,”
IEEE Control Syst. Mag.
,
22
(
6
), pp.
55
65
.
10.
Lee
,
K. S.
,
Kim
,
W. C.
, and
Lee
,
J. H.
,
1996
, “
Model-Based Iterative Learning Control With Quadratic Criterion for Linear Batch Process
,”
J. Control Autom. Syst. Eng.
,
2
(3), p.
148
.
11.
Lee
,
J. H.
,
Lee
,
K. S.
, and
Kim
,
W. C.
,
2000
, “
Model-Based Iterative Learning Control With a Quadratic Criterion for Time Varying Learning Linear Systems
,”
Automatica
,
36
(
5
), pp.
641
657
.
12.
Ersal
,
T.
,
Brundak
,
M.
,
Salvi
,
A.
,
Kim
,
Y.
,
Siegel
,
J. B.
, and
Stein
,
J. L.
,
2014
, “
An Iterative Learning Control Approach to Improving Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
6
), p.
061012
.
13.
Ge
,
X.
,
Brudnak
,
M. J.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2014
, “
A Norm Optimal Iterative Learning Control Framework Towards Internet-Distributed Hardware-in-the-Loop Simulation
,”
American Control Conference
, Portland, OR, June 4–6, pp.
3802
3807
.
14.
Pan
,
Y.-J.
,
Marquez
,
H. J.
, and
Chen
,
T.
,
2006
, “
Sampled Data Iterative Learning Control for a Class of Nonlinear Networked Systems
,”
American Control Conference
, Minneapolis, MN, June 14–16, pp.
3494
3499
.
15.
Harte
,
T. J.
,
Hatonen
,
J.
, and
Owens
,
D. H.
,
2005
, “
Discrete-Time Inverse Model-Based Iterative Learning Control: Stability, Monotonicity and Robustness
,”
Int. J. Control
,
78
(
8
), pp.
577
586
.
16.
De Roover
,
D.
, and
Bosgra
,
O. H.
,
2000
, “
Synthesis of Robust Multi-Variable Iterative Learning Controllers With Application to a Wafer Stage Motion System
,”
Int. J. Control
,
73
(
10
), pp.
978
979
.
17.
Amann
,
N.
,
Owens
,
D. H.
, and
Rogers
,
E.
,
1996
, “
Iterative Learning Control for Discrete-Time Systems With Exponential Rate of Convergence
,”
IEE Proc. Control Theory Appl.
,
143
(
2
), pp.
217
224
.
18.
Ahn
,
H.-S.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2005
, “
Schur Stability Radius Bounds for Robust Iterative Learning Controller Design
,”
American Control Conference
, Portland, OR, June 8–10, pp.
178
183
.
19.
Ahn
,
H.-S.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2007
, “
Stability Analysis of Discrete-Time Iterative Learning Control Systems With Interval Uncertainty
,”
Automatica
,
43
(
5
), pp.
892
902
.
20.
Donkers
,
T.
,
Van De Wijdeven
,
J.
, and
Bosgra
,
O.
,
2008
, “
Robustness Against Model Uncertainties of Norm Optimal Iterative Learning Control
,”
American Control Conference
, Seattle, WA, June 11–13, pp.
4561
4566
.
21.
Norrlof
,
M.
, and
Gunnarsson
,
S.
,
2005
, “
A Note on Causal and CITE Iterative Learning Control
,”
Automatica
,
41
(
2
), pp.
345
350
.
22.
Owens
,
D. H.
,
Hatonen
,
J. J.
, and
Delay
,
S.
,
2009
, “
Robust Monotone Gradient-Based Discrete-Time Iterative Learning Control
,”
Int. J. Robust Nonlinear Control
,
19
(
6
), pp.
634
661
.
23.
Van De Wijdeven
,
J.
,
Donkers
,
T.
, and
Bosgra
,
O.
,
2009
, “
Iterative Learning Control for Uncertain Systems: Robust Monotonic Convergence Analysis
,”
Automatica
,
45
(
10
), pp.
2383
2391
.
24.
Bristow
,
D. A.
,
2008
, “
Weighting Matrix Design for Robust Monotonic Convergence in Norm Optimal Iterative Learning Control
,”
American Control Conference
, Seattle, WA, June 11–13, pp.
4554
4560
.
25.
Bristow
,
D. A.
, and
Singler
,
J. R.
,
2011
, “
Towards Transient Growth Analysis and Design in Iterative Learning Control
,”
Int. J. Control
,
84
(
7
), pp.
1234
1245
.
26.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2016
, “
A Frequency Domain Approach for Designing Filters for Norm-Optimal Iterative Learning Control and Its Fundamental Tradeoff Between Robustness, Convergence Speed and Steady State Error
,”
American Control Conference
, Boston, MA, July 6–8, pp.
384
391
.
27.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2017
, “
Frequency-Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control
,”
IEEE Trans. Control Syst. Technol.
,
26
(
2
), pp.
637
651
.
28.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2017
, “
A Frequency-Dependent Filter Design Approach for Norm-Optimal Iterative Learning Control and Its Fundamental Trade-Off Between Robustness, Convergence Speed, and Steady-State Error
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
2
), p.
021004
.
29.
Madady
,
A.
,
2008
, “
PID Type Iterative Learning Control With Optimal Gains
,”
Int. J. Control Autom. Syst.
,
6
(
2
), p.
194
.
30.
Son
,
T. D.
,
Pipeleers
,
G.
, and
Swevers
,
J.
,
2016
, “
Robust Monotonic Convergent Iterative Learning Control
,”
IEEE Trans. Autom. Control
,
61
(
4
), pp.
1063
1068
.
31.
Ge
,
X.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2016
, “
Optimization Based Weighting Matrices Design for Norm Optimal Iterative Learning Control
,”
ASME
Paper No. DSCC2016-9758
.
You do not currently have access to this content.