Modeling of the soft-solid frictional interactions plays an important role in many robotic and mechatronic systems design. We present a new model that characterizes the two-dimensional (2D) soft-solid contact interactions. The new computational approach integrates the LuGre dynamic friction model with the beam network structure of the soft-solid contact. The LuGre dynamic friction model uses the bristle deformation to capture the friction characteristics and dynamics, while the beam network structure represents the elastic contact interactions. We also present a model simplification to facilitate analysis of model properties. The model prediction and validation results are demonstrated with the experiments. The experimental results confirm the effectiveness of the modeling development. We further use the model to compute the influence of the normal load and sliding velocity on the stick-slip interaction patterns and properties. These results explain and provide analytical foundation for the reported experiments in the literature.

References

1.
Liu
,
H.
,
Wu
,
K.
,
Meusel
,
P.
,
Seitz
,
N.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Fan
,
S. W.
,
Lan
,
T.
, and
Chen
,
Z. P.
,
2008
, “
Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
3692
3697
.
2.
Beccai
,
L.
,
Roccella
,
S.
,
Ascari
,
L.
,
Valdastri
,
P.
,
Sieber
,
A.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2008
, “
Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand
,”
IEEE/ASME Trans. Mechatronics
,
13
(
2
), pp.
158
168
.
3.
Trkov
,
M.
,
Yi
,
J.
,
Liu
,
T.
, and
Li
,
K.
,
2018
, “
Shoe–Floor Interactions in Human Walking With Slips: Modeling and Experiments
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031005
.
4.
Zhang
,
Y.
, and
Yi
,
J.
,
2014
, “
Static Tire/Road Stick-Slip Interactions: Analysis and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1940
1950
.
5.
Fearing
,
R.
, and
Hollerbach
,
J.
,
1985
, “
Basic Solid Mechanics for Tactile Sensing
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
40
54
.
6.
Dahiya
,
R. S.
,
Metta
,
G.
,
Valle
,
M.
, and
Sandini
,
G.
,
2010
, “
Tactile Sensing—From Humans to Humanoids
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
1
20
.
7.
Tiezzi
,
P.
, and
Kao
,
I.
,
2007
, “
Modeling of Viscoelastic Contacts and Evolution of Limit Surface for Robotic Contact Interface
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
206
217
.
8.
Ho
,
V.-A.
,
Dao
,
D. V.
, and
Hirai
,
S.
,
2011
, “
Development and Analysis of a Sliding Tactile Soft Fingertip Embedded With a Microforce/Moment Sensor
,”
IEEE Trans. Rob.
,
27
(
3
), pp.
411
424
.
9.
Ho
,
V. A.
, and
Hirai
,
S.
,
2011
, “
Understanding Slip Perception of Soft Fingertips by Modeling and Simulating Stick-Slip Phenomenon
,” Robotics: Science and Systems 2011, Los Angeles, CA, June 27–30.
10.
Maeno
,
T.
,
Kawamura
,
T.
, and
Cheng
,
S.-C.
,
2004
, “
Friction Estimation by Pressing an Elastic Finger-Shaped Sensor Against a Surface
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
222
228
.
11.
Ueda
,
J.
,
Ikeda
,
A.
, and
Ogagawara
,
T.
,
2005
, “
Grip-Force Control of an Elastic Object by Vision-Based Slip-Margin Feedback During the Incipient Slip
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1139
1147
.
12.
Åström
,
K.
, and
Canudas-de-Wit
,
C.
,
2008
, “
Revisiting the LuGre Friction Model
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
101
114
.
13.
Yi
,
J.
,
Alvarez
,
L.
,
Claeys
,
X.
, and
Horowitz
,
R.
,
2003
, “
Tire/Road Friction Estimation and Emergency Braking Control Using a Dynamic Friction Model
,”
Veh. Syst. Dyn.
,
39
(
2
), pp.
81
97
.
14.
Canudas de Wit
,
C.
,
Tsiotras
,
P.
,
Velenis
,
E.
,
Basset
,
M.
, and
Gissinger
,
G.
,
2003
, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction
,”
Veh. Syst. Dyn.
,
39
(
3
), pp.
189
226
.
15.
Deur
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2004
, “
A 3D Brush-Type Dynamic Tire Friction Model
,”
Veh. Syst. Dyn.
,
42
(
3
), pp.
133
173
.
16.
Liang
,
W.
,
Medanic
,
J.
, and
Ruhl
,
R.
,
2008
, “
Analytical Dynamic Tire Model
,”
Veh. Syst. Dyn.
,
46
(
3
), pp.
197
227
.
17.
Li
,
J.
,
Zhang
,
Y.
, and
Yi
,
J.
,
2013
, “
A Hybrid Physical-Dynamic Tire/Road Friction Model
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011007
.
18.
Zhang
,
Y.
,
Yi
,
J.
, and
Liu
,
T.
,
2013
, “
An Embedded Local Force Sensor for In-Situ Tire-Road Interaction Measurements
,”
IEEE Sens. J.
,
13
(
5
), pp.
1756
1765
.
19.
Zhang
,
Y.
,
Allen
,
A. W.
,
Yi
,
J.
, and
Liu
,
T.
,
2012
, “
Understanding Tire/Road Stick-Slip Interactions With Embedded Rubber Force Sensors
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Kachsiung, Taiwan, July 11–14, pp.
550
555
.
20.
Das
,
S.
,
Cadirov
,
N.
,
Chary
,
S.
,
Kaufman
,
Y.
,
Hogan
,
J.
,
Turner
,
K. L.
, and
Israelachvili
,
J. N.
,
2015
, “
Stickslip Friction of Gecko-Mimetic Flaps on Smooth and Rough Surfaces
,”
J. R. Soc. Interface
,
12
(
104
), p.
20141346
.
21.
Xue
,
L.
,
Pham
,
J. T.
,
Iturri
,
J.
, and
del Campo
,
A.
,
2016
, “
Stickslip Friction of PDMS Surfaces for Bioinspired Adhesives
,”
Langmuir
,
32
(
10
), pp.
2428
2435
.
22.
Berman
,
A. D.
,
Ducker
,
W. A.
, and
Isrealachvili
,
J. N.
,
1996
, “
Origin and Characterization of Different Stickslip Friction Mechanisms
,”
Langmuir
,
12
(
19
), pp.
4559
4563
.
23.
Trkov
,
M.
,
Han
,
H.
,
Yi
,
J.
, and
Liu
,
Y.
,
2015
, “
Stick-Slip Interactions of the Soft-Solid Contact: An Integrated LuGre/Beam Network Model Approach
,”
ASME
Paper No. DSCC2015-10002.
24.
Olsson
,
H.
,
1996
, “
Control Systems With Friction
,” Ph.D. thesis, Lund Institute of Technology, Lund, Sweden.
25.
Trkov
,
M.
,
Yi
,
J.
,
Liu
,
T.
, and
Li
,
K.
,
2014
, “
Shoe-Floor Interactions During Human Slip and Fall: Modeling and Experiments
,”
ASME
Paper No. DSCC2014-6184.
26.
Tuononen
,
A. J.
,
2016
, “
Onset of Frictional Sliding of Rubber–Glass Contact Under Dry and Lubricated Conditions
,”
Sci. Rep.
,
6
, p.
27951
.
27.
Chen
,
D. T.
,
Wen
,
Q.
,
Janmey
,
P. A.
,
Crocker
,
J. C.
, and
Yodh
,
A. G.
,
2010
, “
Rheology of Soft Materials
,”
Annu. Rev. Condens. Matter Phys.
,
1
(
1
), pp.
301
322
.
You do not currently have access to this content.