To reduce the contouring errors in computer-numerical-control (CNC) contour-following tasks, the cross-coupling controller (CCC) is widely researched and used. However, most existing CCCs are well-designed for two-axis contouring and can hardly be generalized to compensate three-axis curved contour following errors. This paper proposes an equivalent-plane CCC scheme so that most of the two-axis CCCs or flexibly designed algorithms can be utilized for equal control of the three-axis contouring errors. An initial-value regeneration-based Newton method is first proposed to compute the foot point from the actual motion position to the desired contour with a high accuracy, so as to establish the equivalent plane where the estimated three-dimensional contouring-error vector is included. After that, the signed contouring error is computed in the equivalent plane, thus a typical two-axis proportional-integral-differential (PID)-based CCC is utilized for its control. Finally, the two-axis control commands generated by the typical CCC are coupled to three-axis control commands according to the geometry of the established equivalent plane. Experimental tests are conducted to verify the effectiveness of the presented method. The testing results illustrate that the proposed equivalent-plane CCC performs much better than conventional method in both error estimation and error control.

References

References
1.
Khalick
,
M. A. E.
, and
Uchiyama
,
N.
,
2011
, “
Discrete-time Model Predictive Contouring Control for Biaxial Feed Drive Systems and Experimental Verification
,”
Mechatronics
,
21
(
6
), pp.
918
926
.
2.
Huo
,
F.
, and
Poo
,
A. N.
,
2013
, “
Precision Contouring Control of Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
64
(
1–4
), pp.
319
333
.
3.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2005
, “
Tracking and Contour Error Control in CNC Servo Systems
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
301
326
.
4.
Lie
,
T.
, and
Robert
,
G. L.
,
2013
, “
Multiaxis Contour Control—The State of the Art
,”
IEEE Trans. Control. Syst. Technol.
,
21
(
6
), pp.
1997
2010
.
5.
Lie
,
T.
, and
Robert
,
G. L.
,
2012
, “
Predictive Contour Control With Adaptive Feed Rate
,”
IEEE Trans. Mechatronics
,
17
(
4
), pp.
669
679
.
6.
Dong
,
J.
,
Wang
,
T.
,
Li
,
B.
, and
Ding
,
Y.
,
2014
, “
Smooth Feedrate Planning for Continuous Short Line Tool Path With Contour Error Constraint
,”
Int. J. Mach. Tools Manuf.
,
76
, pp.
1
12
.
7.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
1
), pp.
65
68
.
8.
Torfs
,
D.
,
Deschutter
,
J.
, and
Swevers
,
J.
,
1992
, “
Extended Bandwidth Error Phase Error Tracking Control of Nonminimal Phase Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
347
351
.
9.
Altintas
,
Y.
,
Erkorkmaz
,
K.
, and
Zhu
,
W.
,
2000
, “
Sliding Mode Controller Design for High Speed Feed Drives
,”
Ann. CIRP
,
49
(
1
), pp.
265
270
.
10.
Koren
,
Y.
,
1980
, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
4
), pp.
265
272
.
11.
Srinivasan
,
K.
, and
Kulkarni
,
P.
,
1990
, “
Cross-Coupled Control of Biaxial Feed Drive Servomechanisms
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
225
232
.
12.
Koren
,
Y.
, and
Lo
,
C.
,
1991
, “
Variable-Gain Cross-Coupling Controller for Contouring
,”
CIRP Ann. Manuf. Technol.
,
40
(
1
), pp.
371
374
.
13.
Yeh
,
S.-S.
, and
Hsu
,
P.-L.
,
1999
, “
Theory and Applications of the Robust Cross-Coupled Control Design
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
3
), pp.
524
530
.
14.
Chin
,
J.
,
Cheng
,
Y.
, and
Lin
,
J.
,
2004
, “
Improving Contour Accuracy by Fuzzy-Logic Enhanced Cross-Coupled Precompensation Method
,”
Robot. Comput. Integr. Manuf.
,
20
(
1
), pp.
65
76
.
15.
Jee
,
S.
,
1998
, “
Fuzzy Logic Cross-coupling Controller for Precision Contour Machining
,”
KSME Int. J.
,
12
(
5
), pp.
800
810
.
16.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2008
, “
A Cross-Coupled Iterative Learning Control Design for Precision Motion Control
,”
IEEE Trans. Control. Syst. Technol.
,
16
(
6
), pp.
1218
1231
.
17.
Chen
,
W.
,
Wang
,
D.
,
Geng
,
Q.
, and
Xia
,
C.
,
2016
, “
Robust Adaptive Cross-Coupling Position Control of Biaxial Motion System
,”
Sci. China Tech. Sci.
,
59
(
4
), pp.
680
688
.
18.
Yeh
,
S.-S.
, and
Hsu
,
P.-L.
,
1999
, “
Analysis and Design of the Integrated Controller for Precise Motion Systems
,”
IEEE Trans. Control Syst. Technol.
,
7
(
6
), pp.
706
717
.
19.
Cheng
,
M.-Y.
,
Su
,
K.-H.
, and
Wang
,
S.-F.
,
2009
, “
Contour Error Reduction for Free-Form Contour Following Tasks of Biaxial Motion Control Systems
,”
Int. J. Mach. Tools Manuf.
,
25
(
2
), pp.
323
333
.
20.
Cheng
,
M.
, and
Lee
,
C.
,
2007
, “
Motion Controller Design for Contour-Following Tasks Based on Real-Time Contour Error Estimation
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1686
1695
.
21.
Huo
,
F.
, and
Poo
,
A.
,
2012
, “
Improving Contouring Accuracy by Using Generalized Cross-Coupled Control
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
49
57
.
22.
Yang
,
J.
, and
Li
,
Z.
,
2011
, “
A Novel Contour Error Estimation for Position Loop-Based Cross-Coupled Control
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
643
655
.
23.
Chen
,
H.
,
Cheng
,
M.
,
Wu
,
C.
, and
Su
,
K.
,
2016
, “
Real Time Parameter Based Contour Error Estimation Algorithms for Free Form Contour Following
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
1
8
.
24.
Yeh
,
S.-S.
, and
Hsu
,
P.-L.
,
2002
, “
Estimation of the Contouring Error Vector for the Cross-Coupled Control Design
,”
IEEE/ASME Trans. Mechatronics
,
7
(
1
), pp.
44
51
.
25.
Zhao
,
H.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Cross-Coupled Controller Design for Triaxial Motion Systems Based on Second-Order Contour Error Estimation
,”
Sci. China Technol. Sci.
,
58
(
7
), pp.
1209
1217
.
26.
Zhu
,
L.
,
Zhao
,
H.
, and
Ding
,
H.
,
2013
, “
Real-Time Contouring Error Estimation for Multi-Axis Motion Systems Using the Second-Order Approximation
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
75
80
.
27.
Khalick
,
M. A. E.
, and
Uchiyama
,
N.
,
2011
, “
Contouring Controller Design Based on Iterative Contour Error Estimation for Three-Dimensional Machining
,”
Robot. Comput. Integr. Manuf.
,
27
, pp.
802
807
.
28.
Jia
,
Z.-Y.
,
Song
,
D.-N.
,
Ma
,
J.-W.
,
Hu
,
G.-Q.
, and
Su
,
W.-W.
,
2017
, “
A NURBS Interpolator With Constant Speed at Feedrate-Sensitive Regions Under Drive and Contour-Error Constraints
,”
Int. J. Mach. Tools Manuf.
,
116
, pp.
1
17
.
You do not currently have access to this content.