This paper deals with the problem of rigid formation control using directed graphs in both two-dimensional (2D) and three-dimensional (3D) spaces. Directed graphs reduce the number of communication, sensing, and/or control channels of the multi-agent system. We show that the directed version of the gradient descent control law asymptotically stabilizes the interagent distance error dynamics of minimally persistent formation graphs. The control analysis begins with a (possibly cyclic) primitive formation that is grown consecutively by Henneberg-type insertions, resulting at each step in two interconnected nonlinear systems, which are recursively analyzed using the stability of interconnected systems. Simulation and experimental results are presented for the directed formation controller in comparison to the standard undirected controller.

References

References
1.
Cheng
,
L.
,
Wang
,
Y.
,
Ren
,
W.
,
Hou
,
Z.-G.
, and
Tan
,
M.
,
2016
, “
Containment Control of Multiagent Systems With Dynamic Leaders Based on PIn-Type Approach
,”
IEEE Trans. Cyber
,
46
(
12
), pp.
3004
3017
.
2.
Gazi
,
V.
, and
Passino
,
K. M.
,
2011
,
Swarm Stability and Optimization
,
Springer
,
Berlin
.
3.
Gutiérrez
,
H.
,
Morales
,
A.
, and
Nijmeijer
,
H.
,
2017
, “
Synchronization Control for a Swarm of Unicycle Robots: Analysis of Different Controller Topologies
,”
Asian J. Control
,
19
(
6
), pp.
1
12
.
4.
Ren
,
W.
, and
Beard
,
R. W.
,
2008
,
Distributed Consensus in Multi-Vehicle Cooperative Control
,
Springer
,
London
.
5.
Ren
,
W.
, and
Cao
,
Y.
,
2011
,
Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues
,
Springer-Verlag
,
London
.
6.
Su
,
S.
,
Lin
,
Z.
, and
Garcia
,
A.
,
2016
, “
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities
,”
IEEE Trans. Cyber.
,
46
(
1
), pp.
325
338
.
7.
Summers
,
T. H.
,
Yu
,
C.
,
Dasgupta
,
S.
, and
Anderson
,
B. D. O.
,
2011
, “
Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane
,”
IEEE Trans. Autom. Control
,
56
(
12
), pp.
2778
2792
.
8.
Eren
,
T.
,
Belhumeur
,
P. N.
,
Anderson
,
B. D. O.
, and
Morse
,
A. S.
,
2002
, “
A Framework for Maintaining Formations Based on Rigidity
,”
IFAC Congress
,
Barcelona, Spain
,
July 21–26
, pp.
2752
2757
.
9.
Anderson
,
B. D. O.
,
Yu
,
C.
,
Fidan
,
B.
, and
Hendrickx
,
J. M.
,
2008
, “
Rigid Graph Control Architectures for Autonomous Formations
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
48
63
.
10.
Cai
,
X.
, and
de Queiroz
,
M.
,
2014
, “
Rigidity-Based Stabilization of Multi-Agent Formations
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
1
), p.
014502
.
11.
Cai
,
X.
, and
de Queiroz
,
M.
,
2015
, “
Adaptive Rigidity-Based Formation Control for Multi-Robotic Vehicles With Dynamics
,”
IEEE Trans. Control Syst. Tech.
,
23
(
1
), pp.
389
396
.
12.
Cao
,
M.
,
Morse
,
A. S.
,
Yu
,
C.
,
Anderson
,
B. D. O.
, and
Dasgupta
,
S.
,
2011
, “
Maintaining a Directed, Triangular Formation of Mobile Autonomous Agents
,”
Commun. Inf. Syst.
,
11
(
1
), pp.
1
16
.
13.
Dimarogonas
,
D. V.
, and
Johansson
,
K. H.
,
2009
, “
Further Results on the Stability of Distance-Based Multi-Robot Formations
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
2972
2977
.
14.
Dimarogonas
,
D. V.
, and
Johansson
,
K. H.
,
2010
, “
Stability Analysis for Multi-Agent Systems Using the Incidence Matrix: Quantized Communication and Formation Control
,”
Automatica
,
46
(
4
), pp.
695
700
.
15.
Dörfler
,
F.
, and
Francis
,
B.
,
2010
, “
Geometric Analysis of the Formation Problem for Autonomous Robots
,”
IEEE Trans. Autom. Control
,
55
(
10
), pp.
2379
2384
.
16.
Krick
,
L.
,
Broucke
,
M. E.
, and
Francis
,
B. A.
,
2009
, “
Stabilization of Infinitesimally Rigid Formations of Multi-Robot Networks
,”
Intl. J. Control
,
82
(
3
), pp.
423
439
.
17.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2011
, “
Formation Control of Mobile Agents Based on Inter-Agent Distance Dynamics
,”
Automatica
,
47
(
10
), pp.
2306
2312
.
18.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2014
, “
Distance-Based Undirected Formations of Single-Integrator and Double-Integrator Modeled Agents in n-Dimensional Space
,”
Int. J. Rob. Nonlinear Control
,
24
(
12
), pp.
1809
1820
.
19.
Sun
,
Z.
,
Helmke
,
U.
, and
Anderson
,
B. D. O.
,
2015
, “
Rigid Formation Shape Control in General Dimensions: An Invariance Principle and Open Problems
,”
IEEE 54th Conference Decision and Control
(
CDC
),
Osaka, Japan
,
Dec. 15–18
, pp.
6095
6100
.
20.
Yu
,
C.
,
Hendrickx
,
J. M.
,
Fidan
,
B.
,
Anderson
,
B. D. O.
, and
Blondel
,
V. D.
,
2007
, “
Three and Higher Dimensional Autonomous Formations: Rigidity, Persistence and Structural Persistence
,”
Automatica
,
43
(
3
), pp.
387
402
.
21.
Zhang
,
P.
,
de Queiroz
,
M.
, and
Cai
,
X.
,
2015
, “
Three-Dimensional Dynamic Formation Control of Multi-Agent Systems Using Rigid Graphs
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p. 111006.
22.
Baillieul
,
J.
, and
Suri
,
A.
,
2003
, “
Information Patterns and Hedging Brockett's Theorem in Controlling Vehicle Formations
,”
IEEE
Conference Decision and Control
,
Maui, HI
,
Dec. 9–12
, pp.
556
563
.
23.
Mou
,
S.
,
Belabbas
,
M.-A.
,
Morse
,
A. S.
,
Sun
,
Z.
, and
Anderson
,
B. D. O.
,
2016
, “
Undirected Rigid Formations Are Problematic
,”
IEEE Trans. Autom. Control
,
61
(
10
), pp.
2821
2836
.
24.
Tanner
,
H. G.
,
Pappas
,
G. J.
, and
Kumar
,
V.
,
2002
, “
Input-to-State Stability on Formation Graphs
,”
41st IEEE Conference Decision and Control
, Las Vegas, NV, Dec. 10–13, pp.
2439
2444
.
25.
Eren
,
T.
,
Whiteley
,
W.
,
Anderson
,
B. D. O.
,
Morse
,
A. S.
, and
Bellhumeur
,
P. N.
,
2005
, “
Information Structures to Secure Control of Rigid Formations With Leader-Follower Structure
,”
American Control Conference
, Portland, OR, June 8–10, pp.
2966
2971
.
26.
Hendrickx
,
J. M.
,
Anderson
,
B. D. O.
,
Delvenne
,
J.
, and
Blondel
,
V. D.
,
2007
, “
Directed Graphs for the Analysis of Rigidity and Persistence in Autonomous Agent Systems
,”
Intl. J. Robust Nonlinear Control
,
17
(
10–11
), pp.
960
981
.
27.
Anderson
,
B. D. O.
,
Yu
,
C.
,
Dasgupta
,
S.
, and
Morse
,
A. S.
,
2007
, “
Control of a Three-Coleader Formation in the Plane
,”
Syst. Control Lett.
,
56
(
9–10
), pp.
573
578
.
28.
Yu
,
C.
,
Anderson
,
B. D. O.
,
Dasgupta
,
S.
, and
Fidan
,
B.
,
2009
, “
Control of Minimally Persistent Formations in the Plane
,”
SIAM J. Control Optim.
,
48
(
1
), pp.
206
233
.
29.
Park
,
M.-C.
,
Sun
,
Z.
,
Oh
,
K.-K.
,
Anderson
,
B. D. O.
, and
Ahn
,
H.-S.
,
2014
, “
Finite-Time Convergence Control for Acyclic Persistent Formations
,”
IEEE
International Symposium Intelligent Control
(ISIC),
Juan Les Pins, France
,
Oct. 8–10
, pp.
1608
1613
.
30.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2011
, “
Distance-Based Control of Cycle-Free Persistent Formations
,”
IEEE
Multi-Conference Systems and Control
,
Denver, CO
,
Sept. 28–30
, pp.
816
821
.
31.
Graver
,
J.
,
Servatius
,
B.
, and
Servatius
,
H.
,
1993
,
Combinatorial Rigidity
,
American Mathematical Society
,
Providence, RI
.
32.
Asimow
,
L.
, and
Roth
,
B.
,
1979
, “
The Rigidity of Graphs II
,”
J. Math. Anal. Appl.
,
68
(
1
), pp.
171
190
.
33.
Izmestiev
,
I.
,
2009
,
Infinitesimal Rigidity of Frameworks and Surfaces
(Lectures on Infinitesimal Rigidity),
Kyushu University
,
Fukuoka, Japan
.
34.
Jackson
,
B.
,
2007
, “
Notes on the Rigidity of Graphs
,”
Notes of the Levico Conference
,
Levico Terme, Italy
, Vol. 4.
35.
Tay
,
T.
, and
Whiteley
,
W.
,
1985
, “
Generating Isostatic Frameworks
,”
Struc. Topol.
,
11
, pp.
21
69
.
36.
Aspnes
,
J.
,
Egen
,
J.
,
Goldenberg
,
D. K.
,
Morse
,
A. S.
,
Whiteley
,
W.
,
Yang
,
Y. R.
,
Anderson
,
B. D. O.
, and
Belhumeur
,
P. N.
,
2006
, “
A Theory of Network Localization
,”
IEEE Trans. Mob. Comput.
,
5
(
12
), pp.
1663
1678
.
37.
Hendrickx
,
J. M.
,
Fidan
,
B.
,
Yu
,
C.
,
Anderson
,
B. D. O.
, and
Blondel
,
V. D.
,
2006
, “
Elementary Operations for the Reorganization of Minimally Persistent Formations
,”
International Symposium Mathematical Theory Networks and Systems
,
Kyoto, Japan
,
July 24–28
, pp.
859
873
.
38.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
39.
Cai
,
X.
, and
de Queiroz
,
M.
,
2015
, “
Formation Maneuvering and Target Interception for Multi-Agent Systems Via Rigid Graphs
,”
Asian J. Control
,
17
(
4
), pp.
1174
1186
.
40.
Khalil
,
H. K.
,
2015
,
Nonlinear Control
,
Pearson Education
,
Harlow, UK
.
41.
Marquez
,
J. H.
,
2003
,
Nonlinear Control Systems Analysis and Design
,
Wiley
,
Hoboken, NJ
.
42.
Pickem
,
D.
,
Wang
,
L.
,
Glotfelter
,
P.
,
Mote
,
M.
,
Ames
,
A.
,
Feron
,
E.
, and
Egerstedt
,
M.
,
2016
, “
The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed
,” e-print arXiv:1609.04730.
43.
Pickem
,
D.
,
Lee
,
M.
, and
Egerstedt
,
M.
,
2015
, “
The GRITSBot in Its Natural habitat - A Multi-Robot Testbed
,”
IEEE International Conference Robotic Automation
(
ICRA
),
Seattle, WA
,
May 26–30
, pp.
4062
4067
.
You do not currently have access to this content.