In this paper, we present a method to accurately predict the wheel speed limits at which mobile robots can operate without significant slipping. The method is based on an asymptotic solution of the nonlinear equations of motion. Using this approach, we can predict wheel slipping limits of both the inside and outside wheel when the robot is in a constant circular motion of any radius. The analytical results are supported by experiments, which show that the inside wheel slipping limits for circular motions of various radii occur very close to the predicted values. The method is then applied to predict wheel speed profiles for general motion without slipping and experimentally verified for a sinusoidal path.

References

References
1.
Kolmanovsky
,
I.
, and
McClamroch
,
N.
,
1995
, “
Developments in Nonholonomic Control Problems
,”
IEEE Control Syst. Mag.
,
15
(
6
), pp.
20
36
.
2.
Fierro
,
R.
, and
Lewis
,
F.
,
1997
, “
Control of a Nonholonomic Mobile Robot: Backstepping Kinematics Into Dynamics
,”
J. Rob. Syst.
,
14
(
3
), pp.
149
163
.
3.
Yang
,
J.-M.
, and
Kim
,
J.-H.
,
1999
, “
Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
578
587
.
4.
Astolfi
,
A.
,
1999
, “
Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control
,”
ASME J. Dyn. Syst., Meas., Control
,
121
(
1
), pp.
121
126
.
5.
Klančar
,
G.
,
Matko
,
D.
, and
BlaŽič
,
S.
,
2005
, “
Mobile Robot Control on a Reference Path
,”
Mediterranean Conference on Control and Automation
, pp.
1343
1348
.
6.
Ghasemi
,
M.
,
Nersesov
,
S.
, and
Clayton
,
G.
,
2014
, “
Finite-Time Tracking Using Sliding Mode Control
,”
J. Franklin Inst.
,
351
(
5
), pp.
2966
2990
.
7.
Raimúndez
,
C.
,
Villaverde
,
A.
, and
Barreiroz
,
A.
,
2014
, “
Adaptive Tracking in Mobile Robots With Input-Output Linearization
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
054503
.
8.
Ghasemi
,
M.
,
Nersesov
,
S.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2014
, “
Sliding Mode Coordination Control for Multiagent Systems With Underactuated Agent Dynamics
,”
Int. J. Control
,
87
(
12
), pp.
2615
2633
.
9.
Luviano-Juárez
,
A.
,
Cortés-Romero
,
J.
, and
Sira-Ramírez
,
H.
,
2015
, “
Trajectory Tracking Control of a Mobile Robot Through a Flatness-Based Exact Feedforward Linearization Scheme
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
5
), p.
051001
.
10.
Durrant-Whyte
,
H.
, and
Baily
,
T.
,
2006
, “
Simultaneous Localization and Mapping (SLAM)—Part I
,”
IEEE Rob. Autom. Mag.
,
13
(
3
), pp.
99
108
.
11.
Baily
,
T.
, and
Durrant-Whyte
,
H.
,
2006
, “
Simultaneous Localization and Mapping (SLAM)—Part II
,”
IEEE Rob. Autom. Mag.
,
13
(
3
), pp.
108
117
.
12.
Kia
,
S.
,
Rounds
,
S.
, and
Martinez
,
S.
,
2016
, “
Cooperative Localization for Mobile Agents: A Recursive Decentralized Algorithm Based on Kalman-Filter Decoupling
,”
IEEE Control Syst. Mag.
,
36
(
2
), pp.
86
101
.
13.
Ward
,
C. C.
, and
Iagnemma
,
K.
,
2008
, “
A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
821
831
.
14.
Iagnemma
,
K.
,
Kang
,
S.
,
Shibly
,
H.
, and
Dubowsky
,
S.
,
2004
, “
Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
921
927
.
15.
Balakrishna
,
R.
, and
Ghosal
,
A.
,
1995
, “
Modeling of Slip for Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
126
132
.
16.
Wang
,
D.
, and
Low
,
C. B.
,
2008
, “
Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
676
687
.
17.
Whitman
,
A.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2017
, “
Asymptotic Inverse Solution and Trajectory Planning for Open-Loop Control of Mobile Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
17
(
5
), p.
051004
.
18.
Whitman
,
A.
,
Ashrafiuon
,
H.
, and
Muske
,
K.
,
2011
, “
Analytical Stability Analysis of Surface Vessel Trajectories for a Control-Oriented Model
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031010
.
19.
Song
,
T.
,
Xi
,
F.
,
Guo
,
S.
,
Tu
,
X.
, and
Li
,
X.
,
2017
, “
Slip Analysis for a Wheeled Mobile Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
2
), p.
021005
.
20.
Ojeda
,
L.
,
Cruz
,
D.
,
Reina
,
G.
, and
Borenstein
,
J.
,
2006
, “
Current-Based Slippage Detection and Odometry Correction for Mobile Robots and Planetary Rovers
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
366
378
.
You do not currently have access to this content.