In this paper, a control scheme is developed and evaluated for stable bilateral haptic teleoperation of a single-rod hydraulic actuator subjected to base disturbance. The proposed controller, based on Lyapunov stability technique, is capable of reducing position errors at master and slave sides, and provides a feel of the contact force between the actuator and the task environment to the operator without a need for direct measurement. The controller requires only the measurements of the actuator line pressures and displacements of the master and slave. The system stability is insensitive to the uncertainties of the physical parameters and of the measurement of the base point motion. Stability of the proposed controller incorporating hydraulic nonlinearities and operator dynamics with an estimated upper value for the base disturbance is analytically proven. Simulation studies validate that the proposed control system is stable while interacting with a task environment. Experimental results demonstrate the effectiveness of control scheme in maintaining stability, while having good position tracking by the hydraulic actuator as well as providing a haptic feel to the operator without direct measurement of interaction force, while the hydraulic actuator is subjected to base disturbance.

References

References
1.
Bettini
,
A.
,
Marayong
,
P.
,
Lang
,
S.
,
Okamura
,
A. M.
, and
Hager
,
G. D.
,
2004
, “
Vision-Assisted Control for Manipulation Using Virtual Fixtures
,”
IEEE Trans. Rob.
,
20
(
6
), pp.
953
966
.
2.
Tafazoli
,
S.
,
Salcudean
,
S. E.
,
Hashtrudi-Zaad
,
K.
, and
Lawrence
,
P. D.
,
2002
, “
Impedance Control of a Teleoperated Excavator
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
355
367
.
3.
Papadopoulos
,
E.
,
Mu
,
B.
, and
Frenette
,
R.
,
2003
, “
On Modeling, Identification, and Control of a Heavy-Duty Electrohydraulic Harvester Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
8
(
2
), pp.
178
187
.
4.
Parker
,
N. R.
,
Salcudean
,
S. E.
, and
Lawrence
,
P. D.
,
1993
, “
Application of Force Feedback to Heavy Duty Hydraulic Machines
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Atlanta, GA, May 2–6, pp.
375
381
.
5.
Hokayem
,
P. F.
, and
Spong
,
M. W.
,
2006
, “
Bilateral Teleoperation: An Historical Survey
,”
J. Autom.
,
42
(
12
), pp.
2035
2057
.
6.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
,
2000
, “
On the Nonlinear Control of Hydraulic Servo-Systems
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Francisco, CA, Apr. 24–28, pp.
1276
1282.
7.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
8.
Ming
,
O.-Y.
,
Beard
,
D. V.
, and
Brooks
,
F. P.
, Jr.
,
1989
, “
Force Display Performs Better Than Visual Display in Simple 6-D Docking Task
,”
International Conference on Robotics and Automation
(
ICRA
), Scottsdale, AZ, May 14–19, pp.
1462
1466
.
9.
Anderson
,
R. J.
, and
Spong
,
M. W.
,
1988
, “
Bilateral Control of Teleoperators With Time Delay
,” 27th
IEEE
Conference on Decision and Control (CDC)
, Austin, TX, Dec. 7–9, pp.
167
173
.
10.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
11.
Sekhavat
,
P.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2006
, “
Impact Stabilizing Controller for Hydraulic Actuators With Friction: Theory and Experiments
,”
Control Eng. Pract.
,
14
(
12
), pp.
1423
1433
.
12.
Sekhavat
,
P.
,
Wu
,
Q.
, and
Sepehri
,
N.
,
2004
, “
Impact Control in Hydraulic Actuators With Friction: Theory and Experiments
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
4432
4437
.
13.
Niksefat
,
N.
,
Wu
,
C. Q.
, and
Sepehri
,
N.
,
2000
, “
Design of a Lyapunov Controller for an Electro-Hydraulic Actuator During Contact Tasks
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
2
), pp.
299
307
.
14.
Halanay
,
A.
,
Safta
,
C. A.
,
Ursu
,
F.
, and
Ursu
,
I.
,
2009
, “
Stability Analysis for a Nonlinear Model of a Hydraulic Servomechanism in a Servoelastic Framework
,”
Nonlinear Anal.: Real World Appl.
,
10
(
2
), pp.
1197
1209
.
15.
Sekhavat
,
P.
,
Wu
,
Q.
, and
Sepehri
,
N.
,
2004
, “
Lyapunov-Based Friction Compensation for Accurate Positioning of a Hydraulic Actuator
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
418
423
.
16.
Sirouspour
,
M. R.
, and
Salcudean
,
S. E.
,
2001
, “
Nonlinear Control of Hydraulic Robots
,”
IEEE Trans. Rob. Autom.
,
17
(
2
), pp.
173
182
.
17.
Cunha
,
M. A. B.
,
2005
, “
Adaptive Cascade Controller Applied to a Hydraulic Actuator
,”
International Conference on Control and Automation
(
ICCA
), Budapest, Hungary, June 26–29, pp.
622
627
.
18.
Zarei-Nia
,
K.
, and
Sepehri
,
N.
,
2012
, “
Lyapunov Stable Displacement-Mode Haptic Manipulation of Hydraulic Actuators: Theory and Experiment
,”
Int. J. Control
,
85
(
9
), pp.
1313
1326
.
19.
Zarei-Nia
,
K.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2012
, “
A Lyapunov Controller for Stable Haptic Manipulation of Hydraulic Actuators
,”
Int. J. Rob. Nonlinear Control
,
22
(
3
), pp.
241
261
.
20.
Zareinia
,
K.
, and
Sepehri
,
N.
,
2015
, “
A Hybrid Haptic Sensation for Teleoperation of Hydraulic Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p. 091001.
21.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T. C.
,
1999
, “
Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
American Control Conference
(
ACC
), San Diego, CA, June 2–4, pp.
759
763
.
22.
Guan
,
C.
, and
Pan
,
S.
,
2008
, “
Nonlinear Adaptive Robust Control of Single-Rod Electro-Hydraulic Actuator With Unknown Nonlinear Parameters
,”
IEEE Trans. Control Syst. Technol.
,
16
(
3
), pp.
434
445
.
23.
Guo
,
K.
,
Wei
,
J.
,
Fang
,
J.
,
Feng
,
R.
, and
Wang
,
X.
,
2015
, “
Position Tracking Control of Electro-Hydraulic Single-Rod Actuator Based on an Extended Disturbance Observer
,”
Mechatronics
,
27
, pp.
47
56
.
24.
Kim
,
W.
,
Shin
,
D.
,
Won
,
D.
, and
Chung
,
C. C.
,
2013
, “
Disturbance-Observer- Based Position Tracking Controller in the Presence of Biased Sinusoidal Disturbance for Electrohydraulic Actuators
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2290
2298
.
25.
Banthia
,
V.
,
Zareinia
,
K.
,
Balakrishnan
,
S.
, and
Sepehri
,
N.
,
2017
, “
A Lyapunov Stable Controller for Bilateral Haptic Teleoperation of Single-Rod Hydraulic Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
11
), p. 111001.
26.
Filippov
,
A. F.
,
1964
, “
Differential Equations With Discontinuous Right-Hand Side
,” Mathematics and Its Applications, Vol. 18, Springer, Dordrecht, The Netherlands.
27.
Wu, Q., and Thornton-Trump, A. B., 1997, “Control of a Base-Excited Inverted Pendulum with Two Degrees of Rotational Freedom,“
J. Franklin Inst.
, 334(1), pp. 63–92.
28.
Wu
,
Q.
,
Sepehri
,
N.
,
Thornton-Trump
,
A. B.
, and
Onyshko
,
S.
,
1995
, “
An Extended Integral Method to Derive Lyapunov Functions for Nonlinear Systems
,”
Int. J. Control
,
62
(
3
), pp.
717
736
.
29.
Wu
,
Q.
,
Onyshko
,
S.
,
Sepehri
,
N.
, and
Thornton-Trump
,
A. B.
,
1998
, “
On Construction of Smooth Lyapunov Functions for Non-Smooth Systems
,”
Int. J. Control
,
69
(
3
), pp.
443
457
.
30.
Wu
,
Q.
, and
Sepehri
,
N.
,
2001
, “
On Lyapunov's Stability Analysis of Non-Smooth Systems With Applications to Control Engineering
,”
Int. J. Nonlinear Mech.
,
36
(
7
), pp.
1153
1161
.
31.
Shevitz
,
D.
, and
Paden
,
B.
,
1994
, “
Lyapunov Stability Theory of Nonsmooth Systems
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1910
1914
.
32.
Yokokohji
,
Y.
, and
Yoshikawa
,
T.
,
1994
, “
Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling-Formulation and Experiment
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
605
620
.
33.
Abdossalami
,
A.
, and
Sirouspour
,
S.
,
2009
, “
Adaptive Control for Improved Transparency in Haptic Simulations
,”
IEEE Trans. Haptics
,
2
(
1
), pp.
2
14
.
34.
Christiansson
,
G. A. V.
, and
van der Helm
,
F. C. T.
,
2007
, “
The Low-Stiffness Teleoperator Slave—A Trade-Off Between Stability and Performance
,”
Int. J. Rob. Res.
,
26
(
3
), pp.
287
299
.
35.
Niksefat
,
N.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2007
, “
Design and Experimental Evaluation of a QFT Contact Task Controller for Electro-Hydraulic Actuators
,”
Int. J. Robust Nonlinear Control
,
17
(
2–3
), pp.
225
250
.
36.
Liu
,
R.
, and
Alleyne
,
A.
,
2000
, “
Nonlinear Force/Pressure Tracking of an Electro-Hydraulic Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
232
236
.
37.
Jerouane
,
M.
,
Sepehri
,
N.
, and
Lamnabhi-Lagarriguea
,
F.
,
2004
, “
Dynamic Analysis of Variable Structure Force Control of Hydraulic Actuators Via the Reaching Law Approach
,”
Int. J. Control
,
77
(
14
), pp.
1260
1268
.
38.
Hahn
,
W.
,
1963
,
Theory and Application of Lyapunov's Direct Method
,
Prentice Hall
,
Englewood, NJ
.
39.
Wu
,
Q.
,
Thornton-Trump
,
A.
, and
Sepehri
,
N.
,
1998
, “
Lyapunov Stability Control of Inverted Pendulums With General Base Point Motion
,”
Int. J. Nonlinear Mech.
,
33
(
5
), pp.
801
818
.
40.
Slotine
,
J. J.
, and
Li
,
W.
,
1990
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
41.
Tsuji
,
T.
,
Morasso
,
P. G.
,
Goto
,
K.
, and
Ito
,
K.
,
1995
, “
Human Hand Impedance Characteristics During Maintained Posture
,”
Biol. Cybern.
,
72
(
6
), pp.
475
485
.
42.
Wronka
,
C.
, and
Dunnigan
,
M.
,
2011
, “
Derivation and Analysis of a Dynamic Model of a Robotic Manipulator on a Moving Base
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
758
769
.
You do not currently have access to this content.