A discrete-time robust controller design method is proposed for optimal tracking of future references in preview systems. In the context of preview systems, it is supposed that future values of the reference signal are available a number of time steps ahead. The objective is to design a control algorithm that minimizes a quadratic error between the reference and the output of the system and at the same time achieves a good level of the control signal. The proposed solution combines a robust feedback controller with a feedforward anticipative filter. The feedback controller's purpose is to assure robustness of the closed-loop system to model uncertainties. Any robust control methodology can be used (such as μ-synthesis, qft, or crone control). The focus of this paper will be on the design of the feedforward action in order to introduce the anticipative effect with respect to known future values of the reference signal without hindering the robustness achieved through the feedback controller. As such, the model uncertainties are taken into account also in the design of the feedforward anticipative filter. The proposed solution is validated in simulation and on an experimental water tank level control system.

References

References
1.
Park
,
S.
,
Deyst
,
J.
, and
How
,
J.
,
2004
, “
A New Nonlinear Guidance Logic for Trajectory Tracking
,”
AIAA
Paper No. AIAA 2004-4900.
2.
Shin
,
D. H.
,
Singh
,
S.
, and
Lee
,
J. J.
,
1992
, “
Explicit Path Tracking by Autonomous Vehicles
,”
Robotica
,
10
(
6
), pp.
539
554
.
3.
Freitas
,
G.
,
Lizarralde
,
F.
,
Hsu
,
L.
, and
Bergerman
,
M.
,
2013
, “
Terrain Model-Based Anticipative Control for Articulated Vehicles With Low Bandwidth Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
382
389
.
4.
Schuurmans
,
J.
,
Hof
,
A.
,
Dijkstra
,
S.
,
Bosgra
,
O. H.
, and
Brouwer
,
R.
,
1999
, “
Simple Water Level Controller for Irrigation and Drainage Canals
,”
J. Irrig. Drain. Eng.
,
125
(
4
), pp.
189
195
.
5.
Li
,
Y.
,
2014
, “
Offtake Feedforward Compensation for Irrigation Channels With Distributed Control
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1991
1998
.
6.
Sheridan
,
T. B.
,
1966
, “
Three Models of Preview Control
,”
IEEE Trans. Hum. Factors Electron.
, (
2
), pp.
91
102
.
7.
Tomizuka
,
M.
,
1975
, “
Optimal Continuous Finite Preview Problem
,”
IEEE Trans. Autom. Control
,
20
(
3
), pp.
362
365
.
8.
Liao
,
F.
, and
Li
,
L.
,
2016
, “
Robust Preview Tracking Control for a Class of Uncertain Discrete-Time Systems
,”
Cogent Eng.
,
3
(
1
), p.
1243033
.
9.
Kojima
,
A.
, and
Ishijima
,
S.
,
2003
, “
H∞ Performance of Preview Control Systems
,”
Automatica
,
39
(
4
), pp.
693
701
.
10.
Middleton
,
R. H.
,
Chen
,
J.
, and
Freudenberg
,
J. S.
,
2004
, “
Tracking Sensitivity and Achievable H∞ Performance in Preview Control
,”
Automatica
,
40
(
8
), pp.
1297
1306
.
11.
Kojima
,
A.
,
2004
, “
H2 Performance on Preview Feedforward Action
,”
16th International Symposium on Mathematical Theory of Networks And Systems
.
12.
Moelja
,
A. A.
, and
Meinsma
,
G.
,
2006
, “
H2 Control of Preview Systems
,”
Automatica
,
42
(
6
), pp.
945
952
.
13.
Akbari
,
A.
, and
Lohmann
,
B.
,
2010
, “
Output Feedback H∞/GH2 Preview Control of Active Vehicle Suspensions: A Comparison Study of LQG Preview
,”
Veh. Syst. Dyn.
,
48
(
12
), pp.
1475
1494
.
14.
Moran Cardenas
,
A.
,
Rázuri
,
J. G.
,
Bonet
,
I.
,
Rahmani
,
R.
, and
Sundgren
,
D.
,
2014
, “
Design of High Accuracy Tracking Systems With H∞ Preview Control
,”
Polibits
,
50
, pp.
21
28
.
15.
Kojima
,
A.
,
2015
, “
H∞ Controller Design for Preview and Delayed Systems
,”
IEEE Trans. Autom. Control
,
60
(
2
), pp.
404
419
.
16.
Wang
,
D.
,
Liao
,
F.
, and
Tomizuka
,
M.
,
2016
, “
Adaptive Preview Control for Piecewise Discrete-Time Systems Using Multiple Models
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
9932
9946
.
17.
Cheng
,
J.
,
Dong
,
X.
,
Xue
,
J.
,
Wang
,
X.
,
Wang
,
X.
, and
Zhi
,
J.
,
2014
, “
Fuzzy Preview Controller Design for Aircraft-Pilot Closed Loop System
,”
Acta Aeronaut. Astronaut. Sin.
,
35
(
3
), pp.
807
820
.
18.
Williams
,
M. M.
,
Loukianov
,
A. G.
, and
Bayro-Corrochano
,
E.
,
2013
, “
Zmp Based Pattern Generation for Biped Walking Using Optimal Preview Integral Sliding Mode Control
,”
13th IEEE-RAS International Conference on Humanoid Robots
(
Humanoids
), Atlanta, GA, Oct. 15–17, pp.
100
105
.
19.
Makarov
,
M.
,
Grossard
,
M.
,
Rodríguez-Ayerbe
,
P.
, and
Dumur
,
D.
,
2016
, “
Modeling and Preview H∞ Control Design for Motion Control of Elastic-Joint Robots With Uncertainties
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6429
6438
.
20.
Li
,
L.
,
Liao
,
F.
, and
Deng
,
J.
,
2017
, “
H∞ Preview Control of a Class of Uncertain Discrete-Time Systems
,”
Asian J. Control
,
19
(4), pp.
1542
1556
.
21.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
,
1990
,
Feedback Control Theory
,
Macmillan Publishing
,
Mineola, New York
.
22.
Sabatier
,
J.
,
Lanusse
,
P.
,
Melchior
,
P.
, and
Oustaloup
,
A.
,
2015
,
Fractional Order Differentiation and Robust Control Design
(Intelligent Systems, Control and Automation: Science and Engineering),
Springer
,
Dordrecht
,
The Netherlands
.
23.
Lanusse
,
P.
,
2010
,
CRONE Control System Design, a CRONE Toolbox for MATLAB
, CRONE Group, University of Bordeaux, France.
24.
Lanusse
,
P.
,
Oustaloup
,
A.
, and
Pommier-Budinger
,
V.
,
2012
, “
Stability of Closed Loop Fractional Order Systems and Definition of Damping Contours for the Design of Controllers
,”
Int. J. Bifurcation Chaos
,
22
(
4
), p.
1230013
.
25.
Achnib
,
A.
,
Airimitoaie
,
T.-B.
,
Lanusse
,
P.
,
Guefrachi
,
A.
,
Aoun
,
M.
, and
Chetoui
,
M.
,
2018
, “
Anticipative Robust Design Applied to a Water Level Control System
,”
European Control Conference (ECC)
, pp. 863–869.
26.
Lanusse
,
P.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2015
, “
Fractional Order PID and First Generation CRONE Control System Design
,”
Fractional Order Differentiation and Robust Control Design
,
Springer
, Dordrecht, The Netherlands, pp.
63
105
.
You do not currently have access to this content.