Bioinspired design of robotic systems can offer many potential advantages in comparison to traditional architectures including improved adaptability, maneuverability, or efficiency. Substantial progress has been made in the design and fabrication of bioinspired systems. While many of these systems are bioinspired at a system architecture level, the design of linkage connections often assumes that motion is well approximated by ideal joints subject to designer-specified box constraints. However, such constraints can allow a robot to achieve unnatural and potentially unstable configurations. In contrast, this paper develops a methodology, which identifies the set of admissible configurations from experimental observations and optimizes a compliant structure around the joint such that motions evolve on or close to the observed configuration set. This approach formulates an analytical-empirical (AE) potential energy field, which “pushes” system trajectories toward the set of observations. Then, the strain energy of a compliant structure is optimized to approximate this energy field. While our approach requires that kinematics of a joint be specified by a designer, the optimized compliant structure enforces constraints on joint motion without requiring an explicit definition of box-constraints. To validate our approach, we construct a single degree-of-freedom elbow joint, which closely matches the AE and optimal potential energy functions and admissible motions remain within the observation set.

References

References
1.
Kulić
,
D.
,
Venture
,
G.
,
Yamane
,
K.
,
Demircan
,
E.
,
Mizuuchi
,
I.
, and
Mombaur
,
K.
,
2016
, “
Anthropomorphic Movement Analysis and Synthesis a Survey of Methods and Applications
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
776
795
.
2.
Orlowski
,
C. T.
, and
Girard
,
A. R.
,
2011
, “
Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles
,”
AIAA J.
,
49
(
5
), pp.
969
981
.
3.
Spong
,
M. W.
,
Hutchinson, S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control. Number 1
,
1st ed.
,
Wiley
,
Hoboken, NJ
.
4.
Featherstone, R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
Berlin
.
5.
Behbahani, S. B.
,
Wang, J.
, and
Tan, X.
,
2013
, “
A Dynamic Model for Robotic Fish With Flexible Pectoral Fins
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics Wollongong
, NSW, Australia, July 9–12, pp.
1552
1557
.
6.
Lotti
,
F.
,
Tiezzi
,
P.
,
Vassura
,
G.
,
Biagiotti
,
L.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2005
, “
Development of UB Hand 3: Early Results
,”
IEEE
International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
4488
4493
.
7.
Bender
,
M. J.
,
McClelland
,
H. G.
,
Bledt
,
G.
,
Kurdila
,
A.
,
Furukawa
,
T.
, and
Mueller, R.
,
2015
, “
Trajectory Estimation of Bat Flight Using a Multi-View Camera System
,”
AIAA
Paper No. AIAA 2015-1806.
8.
Bender
,
M. J.
,
McClelland
,
H. M.
,
Kurdila, A.
, and
Mueller, R.
,
2016
, “
Recursive Bayesian Estimation of Bat Flapping Flight Using Kinematic Trees
,”
AIAA
Paper No. AIAA 2016-0945.
9.
Bender
,
M. J.
,
Tian
,
L.
,
Fan
,
X.
,
Kurdila
,
A.
, and
Müller, R.
,
2018
, “
Spatially Recursive Estimation and Gaussian Process Dynamic Models of Bat Flapping Flight
,”
Nonlinear Dyn.
(in press).
10.
Eichener, M.
, and
Ferrari, V.
,
2009
, “
Better Appearance Models for Pictorial Structures
,”
British Machine Vision Conference (BMVC)
, London, Sept. 7–10, pp.
1
11
.
11.
Moeslund
,
T. B.
,
Hilton
,
A.
, and
Krüger
,
V.
,
2006
, “
A Survey of Advances in Vision-Based Human Motion Capture and Analysis
,”
Comput. Vision Image Understanding
,
104
(
2–3
), pp.
90
126
.
12.
Gross, R.
, and
Shi, J.
,
2001
,
The Cmu Motion of Body (Mobo) Database. Technical Report CMU-RI-TR
,
Carnegie Mellon University
,
Pittsburgh, PA
, pp.
1
18
.
13.
Sigal
,
L.
,
Balan
,
A. O.
, and
Black
,
M. J.
,
2010
, “
HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion
,”
Int. J. Comput. Vision
,
87
(
1–2
), pp.
4
27
.
14.
Lotti
,
F.
, and
Vassura
,
G.
,
2002
, “
A Novel Approach to Mechanical Design of Articulated Fingers for Robotic Hands
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Lausanne, Switzerland, Sept. 30–Oct. 4, pp. 1687–1692.
15.
Bergou
,
A. J.
,
Swartz
,
S.
,
Breuer
,
K.
, and
Taubin
,
G.
,
2011
, “
3D Reconstruction of Bat Flight Kinematics From Sparse Multiple Views
,”
IEEE
International Conference on Computer Vision Workshops (ICCV Workshops)
, Barcelona, Spain, Nov. 6–13, pp.
1618
1625
.
16.
Bergou
,
A. J.
,
Swartz
,
S. M.
,
Vejdani
,
H.
, and
Riskin
,
D. K.
,
2015
, “
Falling With Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia
,”
PLoS Biol.
,
13
(
11
), pp.
1
16
.
17.
Cheney
,
J. A.
,
Ton, D.
,
Konow
,
N.
,
Riskin
,
D. K.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2014
, “
Hindlimb Motion During Steady Flight of the Lesser Dog-Faced Fruit Bat, Cynopterus Brachyotis
,”
PLoS One
,
9
(
5
), pp.
1
8
.
18.
Iriarte-Dıaz,
Riskin
,
D. K.
,
Willis
,
D. J.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2011
, “
Whole-Body Kinematics of a Fruit Bat Reveal the Influence of Wing Inertia on Body Accelerations
,”
J. Exp. Biol.
,
214
(
Pt. 9
), pp.
1546
1553
.
19.
Iriarte-Díaz
,
J.
, and
Swartz
,
S. M.
,
2008
, “
Kinematics of Slow Turn Maneuvering in the Fruit Bat Cynopterus Brachyotis
,”
J. Exp. Biol.
,
211
(
Pt. 21
), pp.
3478
3489
.
20.
Hubel
,
T. Y.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2010
, “
Wake Structure and Wing Kinematics: The Flight of the Lesser Dog-Faced Fruit Bat, Cynopterus Brachyotis
,”
J. Exp. Biol.
,
213
(
Pt. 20
), pp.
3427
3440
.
21.
Hubel
,
T. Y.
,
Hristov
,
N. I.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2010
, “
Time-Resolved Wake Structure and Kinematics of Bat Flight
,”
Exp. Fluids
,
46
(
5
), pp.
933
943
.
22.
Bahlman
,
J. W.
,
Price-Waldman
,
R. M.
,
Lippe
,
H. W.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2016
, “
Simplifying a Wing: Diversity and Functional Consequences of Digital Joint Reduction in Bat Wings
,”
J. Anatomy
,
229
(
1
), pp.
114
127
.
23.
Riskin
,
D. K.
,
Willis
,
D. J.
,
Iriarte-Díaz
,
J.
,
Hedrick
,
T. L.
,
Kostandov
,
M.
,
Chen
,
J.
,
Laidlaw
,
D. H.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2008
, “
Quantifying the Complexity of Bat Wing Kinematics
,”
J. Theor. Biol.
,
254
(
3
), pp.
604
615
.
24.
Bahlman
,
J. W.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2013
, “
Design and Characterization of a Multi-Articulated Robotic Bat Wing
,”
Bioinspir Biomim.
,
8
(1), p. 016009.
25.
Colorado
,
J.
,
Barrientos
,
A.
,
Rossi
,
C.
, and
Breuer
,
K. S.
,
2013
, “
Biomechanics of Smart Wings in a Bat Robot: Morphing Wings Using SMA Actuators
,”
Bioinspir Biomim.
,
7
(3), p. 036006.
26.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.
, and
Hutchinson
,
S.
,
2015
, “
Lagrangian Modeling and Flight Control of Articulated-Winged Bat Robot
,”
IEEE
International Conference on Intelligent Robots and Systems, Hamburg, Germany, Sept. 28–Oct. 2, pp.
2867
2874
.
27.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.
, and
Hutchinson
,
S.
,
2016
, “
Bat Bot (B2), A Biologically Inspired Flying Machine
,”
IEEE
International Conference on Robotics and Automation, Stockholm, Sweden, May 16–21, pp.
3219
3226
.
28.
Ramezani
,
A.
,
Shi
,
X.
,
Chung
,
S.
, and
Hutchinson
,
S.
,
2016
, “
Nonlinear Flight Controller Synthesis of a Bat-Inspired Micro Aerial Vehicle
,”
AIAA
Paper No. AIAA 2016-1376.
29.
Gibb
,
A. C.
,
Jayne
,
B. C.
, and
Lauder
,
G. V.
,
1994
, “
Kinematics of Pectoral Fin Locomotion in the Bluegill Sunfish Lepomis Macrochirus
,”
J. Exp. Biol.
,
189
(
1
), pp.
133
161
.http://jeb.biologists.org/content/189/1/133
30.
Behbahani
,
S. B.
, and
Tan
,
X.
,
2016
, “
Bio-Inspired Flexible Joints With Passive Feathering for Robotic Fish Pectoral Fins
,”
Bioinspir. Biomim.
,
11
(
3
), pp.
1
14
.
31.
Bächer
,
M.
,
Bickel
,
B.
,
James
,
D. L.
, and
Pfister
,
H.
,
2012
, “
Fabricating Articulated Characters From Skinned Meshes
,”
ACM Trans. Graph.
,
31
(
4
), pp.
1
9
.
32.
Pérez
,
J.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
,
Canabal
,
J. A.
,
Sumner
,
R.
, and
Otaduy
,
M. A.
,
2015
, “
Design and Fabrication of Flexible Rod Meshes
,”
ACM Trans. Graph.
,
34
(
4
), pp.
138
1–138
.
33.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph.
,
27
(
3
), p.
1
.
34.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graph.
,
32
(
4
), p.
1
.
35.
Dadashi
,
S.
,
Mcclelland
,
H. G.
, and
Kurdila
,
A.
,
2017
, “
Learning Theory and Empirical Potentials for Modeling Discrete Mechanics
,”
IEEE
American Control Conference
, Seattle, WA, May 24–26, pp.
4466
4472
.
36.
Goldstein, H.
,
Poole, C. P.
, and
Safko, J.
,
2011
,
Classical Mechanics
,
Pearson
, San Francisco, CA.
37.
Greenwood, D. T.
,
1988
,
Greenwood. Principles of Dynamics
,
Prentice Hall
, Upper Saddle River, NJ.
38.
Meirovitch, L.
,
2003
,
Methods of Analytical Dynamics
,
Dover
, Mineola, NY.
39.
Bloch, A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer
, New York.
40.
Bullo, F.
, and
Lewis
,
A. D.
,
2005
,
Geometric Control of Mechanical Systems
,
Springer
, New York.
41.
Abraham, R.
, and
Marsden, J.
,
1987
,
Foundations of Mechanics
,
Addison-Wesley Publishing Company
, Redwood City, CA.
42.
Marsden
,
J. E.
, and
West, M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.
43.
Monforte
,
J. C.
,
2002
,
Geometric, Control and Numerical Aspects of Nonholonomic Systems
, Vol.
10
,
Springer-Verlag
, Berlin.
44.
Hairer, E.
,
Lubich, C.
, and
Wanner, G.
,
2006
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
,
2nd ed.
,
Springer
, Amsterdam, The Netherlands.
45.
Hauberg, S.
,
2011
, “
Spatial Models of Human Motion
,” Ph.D. thesis, University of Copenhagen, Copenhagen, Denmark.
46.
De Vito
,
E.
,
Rosasco
,
L.
, and
Toigo
,
A.
,
2014
, “
Learning Sets With Separating Kernels
,”
Appl. Comput. Harmonic Anal.
,
37
(
2
), pp.
185
217
.
47.
Rosasco
,
L.
,
Belkin, M.
, and
De Vito
,
E.
,
2010
, “
On Learning With Integral Operators
,”
J. Mach. Learn. Res.
,
11
, pp.
905
934
.http://www.jmlr.org/papers/volume11/rosasco10a/rosasco10a.pdf
48.
Bornemann, F.,
1998
,
Homogenization in Time of Singularly Perturbed Mechanical Systems
(Lecture Notes In Mathematics, Vol. 1687),
1st ed.
,
Springer-Verlag
,
Berlin
.
49.
Craig, R.
, and
Kurdila, A.
,
2006
,
Introduction to Structural Dynamics
, 2nd ed.,
Wiley
, Hoboken, NJ.
50.
Urtasun
,
R.
,
Fleet
,
J. D.
, and
Fua
,
P.
,
2006
, “
3D People Tracking with Gaussian Process Dynamical Models
,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (
CVPR'06
), New York, June 17–22, pp. 238–245.
51.
Urtasun, R.
,
Fleet
,
D. J.
, and
Lawrence
,
N. D.
,
2007
, “
Modeling Human Locomotion With Topologically Constrained Latent Variable Models
,”
Human Motion—Understanding, Modeling, Capture and Animation
(Lecture Notes in Computer Science, Vol. 4814), A. Elgammal, B. Rosenhahn, and R. Klette, eds., Springer, Berlin, pp.
104
118
.
52.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
, University Press Group Limited, Boston, MA.
53.
Inman
,
D. J.
,
2008
,
Engineering Vibrations
,
3rd ed.
,
Pearson Education
,
Upper Saddle River, NJ
.
54.
Wendland, H.
,
2013
,
Scattered Data Approximation
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.