In this paper, we develop the equations of motion at low-speed of a swimming robot for tank floor inspection. The proposed dynamic model incorporates a new friction drag force model for low-speed streamlined swimming robots. Based on a boundary layer theory analysis, we prove that for low-speed maneuvering case (Re from 103 to 105), the friction drag force component is nonlinear and is not insignificant, as previously considered. The proposed drag viscous model is derived based on hydrodynamic laws, validated via computational fluid dynamics (CFD) simulations, and then experimental tests. The model hydrodynamic coefficients are estimated through CFD tools. The robot wheels friction LuGre model is experimentally identified. Extensive experimental tests were conducted on the swimming robot in a circular water pool to validate the complete dynamic model. The dynamic model developed in this paper may be useful to design model-based advanced control laws required for accurate maneuverability of floor inspection swimming robots.

References

References
1.
Griffiths
,
G.
,
2002
,
Technology and Applications of Autonomous Underwater Vehicles
, Vol.
2
,
CRC Press
, New York.
2.
Shukla
,
A.
, and
Karki
,
H.
,
2013
, “
A Review of Robotics in Onshore Oil-Gas Industry
,”
IEEE International Conference on Mechatronics and Automation
, Takamatsu, Japan, pp.
1153
1160
.
3.
Azis
,
F. A.
,
Aras
,
M. S. M.
,
Rashid
,
M. Z. A.
,
Othman
,
M. N.
, and
Abdullah
,
S. S.
,
2012
, “
Problem Identification for Underwater Remotely Operated Vehicle (ROV): A Case Study
,”
Procedia Eng.
,
41
, pp.
554
560
.
4.
Avila
,
J. P. J.
, and
Adamowski
,
J. C.
,
2011
, “
Experimental Evaluation of the Hydrodynamic Coefficients of a ROV through Morison's Equation
,”
Ocean Eng.
,
38
(
17–18
), pp.
2162
2170
.
5.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
, Cambridge, MA.
6.
Munson
,
B. R.
,
Rothmayer
,
A. P.
, and
Okiishi
,
T. H.
,
2014
,
Fundamentals of Fluid Mechanics
,
7th ed.
,
Wiley
, Hoboken, NJ.
7.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,
Hoerner Fluid Dynamics
, Brick Town, NJ.
8.
White
,
F. M.
,
2010
,
Fluid Mechanics
,
7th ed.
,
McGraw-Hill
, New York.
9.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
, New York.
10.
Yang
,
H.
, and
Zhang
,
F.
,
2012
, “
Robust Control of Formation Dynamics for Autonomous Underwater Vehicles in Horizontal Plane
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
3
), p.
031009
.
11.
Kumar
,
R. P.
,
Dasgupta
,
A.
, and
Kumar
,
C. S.
,
2008
, “
A New Tracking Controller Design for Underwater Vehicles Using Quadratic Stabilization
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
2
), p.
024502
.
12.
Santhakumar
,
M.
, and
Kim
,
J.
,
2014
, “
Robust Adaptive Tracking Control of Autonomous Underwater Vehicle-Manipulator Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
054502
.
13.
Ridao
,
P.
,
Tiano
,
A.
,
El-Fakdi
,
A.
,
Carreras
,
M.
, and
Zirilli
,
A.
,
2004
, “
On the Identification of Non-Linear Models of Unmanned Underwater Vehicles
,”
Control Eng. Pract.
,
12
(
12
), pp.
1483
1499
.
14.
Parapari
,
S.
,
2012
, “
Identification of Underwater Vehicle Hydrodynamic Coefficients Using Model Tests
,”
Int. J. Maritime Technol.
,
7
(
14
), pp.
31
43
.
15.
Caccia
,
M.
,
Indiveri
,
G.
, and
Veruggio
,
G.
,
2000
, “
Modeling and Identification of Open-Frame Variable Configuration Unmanned Underwater Vehicles
,”
IEEE J. Oceanic Eng.
,
25
(
2
), pp.
227
240
.
16.
Yuh
,
J.
,
1990
, “
Modeling and Control of Underwater Robotic Vehicles
,”
IEEE Trans. Syst., Man, Cybern.
,
20
(
6
), pp.
475
1483
.https://pdfs.semanticscholar.org/9a8d/d187380033ee5b8f39b004f8b461efb70733.pdf
17.
Yuh
,
J.
,
1994
, “
Learning Control for Underwater Robotic Vehicles
,”
IEEE Control Syst.
,
14
(
2
), pp.
39
46
.
18.
Caccia
,
M.
, and
Veruggio
,
G.
,
2000
, “
Guidance and Control of a Reconfigurable Unmanned Underwater Vehicle
,”
Control Eng. Pract.
,
8
(
1
), pp.
21
37
.
19.
Ridao
,
P.
,
Battle
,
J.
, and
Carreras
,
M.
,
2001
, “
Model Identification of a Low-Speed UUV
,”
IFAC Proc.
,
34
(
7
), pp.
395
400
.
20.
Ross
,
A.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2004
, “
Identification of Underwater Vehicle Hydrodynamic Coefficients Using Free Decay Tests
,”
IFAC Proc. Vol.
,
37
(
10
), pp.
363
368
.
21.
Healey
,
A. J.
, and
Marco
,
D. B.
,
1992
, “
Slow Speed Flight Control of Autonomous Underwater Vehicles: Experimental Results With NPS AUV II
,”
The Second International Offshore and Polar Engineering Conference
, International Society of Offshore and Polar Engineers, Monterey, CA, June 14–19, pp. 523–532.
22.
Gertler
,
M.
,
1967
, “
The DTMB Planar-Motion-Mechanism System
,” David W. Taylor Naval Ship Research and Development Center, Bethesda Department of Hydromechanics, Washington, DC, Report No. HML-TR-2523.
23.
Nomoto
,
M.
, and
Hattori
,
M.
,
1986
, “
A Deep ROV Dolphin 3K: Design and Performance Analysis
,”
IEEE J. Oceanic Eng.
,
11
(
3
), pp.
373
391
.
24.
Smallwood
,
D. A.
, and
Whitcomb
,
L. L.
,
2003
, “
Adaptive Identification of Dynamically Positioned Underwater Robotic Vehicles
,”
Control Syst. Technol., IEEE Trans.
,
11
(
4
), pp.
505
515
.
25.
Tang
,
S.
,
Ura
,
T.
,
Nakatani
,
T.
,
Thornton
,
B.
, and
Jiang
,
T.
,
2009
, “
Estimation of the Hydrodynamic Coefficients of the Complex-Shaped Autonomous Underwater Vehicle TUNA-SAND
,”
J. Mar. Sci. Technol.
,
14
(
3
), pp.
373
386
.
26.
Zhang
,
H.
,
Xu
,
Y. R.
, and
Cai
,
H. P.
,
2010
, “
Using CFD Software to Calculate Hydrodynamic Coefficients
,”
J. Mar. Sci. Appl.
,
9
(
2
), pp.
149
155
.
27.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
28.
ANSYS
,
2012
, “
ANSYS Workbench, Release 14.5
,” ANSYS, Canonsburg, PA.
29.
Dahlby
,
L. M.
,
2016
, “
Investigation of Aerodynamic Performance Predictions by CFD Using Transition Models and Comparison With Test Data
,” Master's thesis, Luleå University of Technology, Luleå, Sweden
30.
Patel
,
K. S.
,
Patel
,
S. B.
,
Patel
,
U. B.
, and
Ahuja
,
A. P.
,
2014
, “
CFD Analysis of an Aerofoil
,”
Int. J. Eng. Res.
,
3
(
3
), pp.
154
158
.
31.
Chitta
,
V.
,
Walters
,
D. K.
, and
Dhakal
,
T. P.
,
2012
,
Prediction of Aerodynamic Characteristics for Elliptic Airfoils in Unmanned Aerial Vehicle Applications
,
INTECH Open Access Publisher
, Starkville, MS.
32.
Nancy, H., 2015, “
Shape Effect on Drag
,” NASA Glenn Research Center, Cleveland, OH, accessed May 5, 2015, https://www.grc.nasa.gov/www/k-12/airplane/shaped.html
33.
De Wit
,
C. C.
, and
Lischinsky
,
P.
,
1998
, “
Adaptive Friction Compensation With Partially Known Dynamic Friction Model
,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
65
80
.
34.
Gagvert
,
M.
,
2012
, “
Comparison of Two Friction Models
,” Master thesis, Lund University, Lund, Sweden.
You do not currently have access to this content.