An integrated and general methodology is required to define an ideal relation between input controls and structural parameters of a system in trajectory tracking problems. For underactuated manipulators, a synergistic optimal design should be able to reduce elastic deformations, mass of the structure, and actuation forces. The key advantage of such integrated approach is the capability to search in a feasible design space, to account for many dynamic couplings in an early design stage, and to avoid simplifying assumptions which would induce to suboptimal design. Particularly, some advances considering underactuated manipulators are the possibility to treat nonminimum phase systems, then lighter structures could be selected, since bounded and smoother solution can be generated. A synergistic consideration, in order to find the desired requirements and realize the specified task through an optimal control problem, is in evidence, where a generalization of an inverse dynamics problem is defined. A planar underactuated manipulator is considered for the methodology application.

References

References
1.
Da Silva
,
M.
,
Brüls
,
O.
,
Desmet
,
W.
, and
Van Brussel
,
H.
,
2009
, “
Integrated Structure and Control Design for Mechatronic Systems With Configuration-Dependent Dynamics
,”
Mechatronics
,
19
(
6
), pp.
1016
1025
.
2.
Ravichandran
,
T.
,
Wang
,
D.
, and
Heppler
,
G.
,
2006
, “
Simultaneous Plant-Controller Design Optimization of a Two-Link Planar Manipulator
,”
Mechatronics
,
16
(
3–4
), pp.
233
242
.
3.
Rieber
,
J.
, and
Taylor
,
D.
,
2004
, “
Integrated Control System and Mechanical Design of a Compliant Two-Axes Mechanism
,”
Mechatronics
,
14
(
9
), pp.
1069
1087
.
4.
Van Amerongen
,
J.
,
2003
, “
Mechatronic Design
,”
Mechatronics
,
13
(
10
), pp.
1045
1066
.
5.
Van Brussel
,
H.
,
1996
, “
Mechatronics—A Powerful Concurrent Engineering Framework
,”
IEEE-ASME Trans. Mech.
,
1
(
2
), pp.
127
136
.
6.
Oral, S.
, and
Kemal Ider, S.
,
1997
, “
Optimum Design of High-Speed Flexible Robotic Arms With Dynamic Behavior Constraints
,”
Comput. Struct.
,
65
(
2
), pp.
255
259
.
7.
Haussler
,
P.
,
Minx
,
J.
, and
Emmrich
,
D.
,
2004
, “
Topology Optimization of Dynamically Loaded Parts in Mechanical Systems: Coupling of MBS, FEM and Structural Optimization
,”
NAFEMS Seminar Analysis of Multi-Body Systems Using FEM and MBS
.
8.
Hong
,
E.
,
You
,
B.
,
Kim
,
C.
, and
Park
,
G.
,
2010
, “
Optimization of Flexible Components of Multibody Systems Via Equivalent Static Loads
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
549
562
.
9.
Da Silva
,
M.
,
Brüls
,
O.
,
Paijmans
,
B.
,
Desmet
,
W.
, and
Van Brussel
,
H.
,
2009
, “
Computer-Aided Integrated Design for Mechatronic Systems With Varying Dynamics
,”
Motion and Vibration Control (Selected Papers from MOVIC 2008)
, Springer, Dordrecht, The Netherlands, pp.
53
62
.
10.
Da Silva
,
M.
,
Brüls
,
O.
,
Swevers
,
J.
,
Desmet
,
W.
, and
Van Brussel
,
H.
,
2009
, “
Computer-Aided Integrated Design for Machines With Varying Dynamics
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1733
1745
.
11.
Seifried
,
R.
,
2012
, “
Integrated Mechanical and Control Design of Underactuated Multibody Systems
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1539
1557
.
12.
Chernousko
,
F. L.
,
Bolotnik
,
N. N.
, and
Gradetsky
,
V.
,
1994
,
Manipulation Robots—Dynamics, Control and Optimization
,
CRC Press
,
Boca Raton, FL
.
13.
Sun
,
N.
, and
Fang
,
Y.
,
2012
, “
New Energy Analytical Results for the Regulation of Underactuated Overhead Cranes: An End-Effector Motion-Based Approach
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4723
4734
.
14.
Sun
,
N.
,
Fang
,
Y.
,
Zhang
,
Y.
, and
Ma
,
B.
,
2012
, “
A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes
,”
IEEE-ASME Trans. Mech.
,
17
(
1
), pp.
166
173
.
15.
Masarati
,
P.
,
Morandini
,
M.
, and
Fumagalli
,
A.
,
2014
, “
Control Constraint of Underactuated Aerospace Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021014
.
16.
Ehrgott
,
M.
,
2005
,
Multicriteria Optimization
,
Springer
,
Auckland, New Zealand
.
17.
Miettinen
,
K.
,
1999
,
Nonlinear Multiobjective Optimization
,
Springer
, New York.
18.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
19.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
20.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
21.
Bastos
,
G.
,
Seifried
,
R.
, and
Brüls
,
O.
,
2017
, “
Analysis of Stable Model Inversion Methods for Constrained Underactuated Mechanical Systems
,”
Mech. Mach. Theory
,
111
, pp.
99
117
.
22.
Newmark
,
N.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div. (ASCE)
,
85
(3), pp.
67
94
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0011858
23.
Brenan
,
K.
,
Campbell
,
S.
, and
Petzold
,
L.
,
1996
,
Numerical Solution of Initial–Value Problems in Differential–Algebraic Equations
,
2nd ed.
,
SIAM
,
Philadelphia, PA
.
24.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
, Berlin.
25.
Seifried
,
R.
,
2014
,
Dynamics of Underactuated Multibody System
,
Springer
, Cham, Switzerland.
26.
Bastos
,
G.
,
Seifried
,
R.
, and
Brüls
,
O.
,
2013
, “
Inverse Dynamics of Serial and Parallel Underactuated Multibody Systems Using a DAE Optimal Control Approach
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
359
376
.
27.
Brüls
,
O.
,
Bastos
,
G.
, and
Seifried
,
R.
,
2014
, “
A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(1), p.
011014
.
28.
Betts
,
J.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
2nd ed.
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
29.
Bock
,
H.
, and
Plitt
,
K.
,
1984
, “
A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems
,”
Ninth World Congress—International Federation of Automatic Control
, Budapest, Hungary, July 2–6, pp.
242
247
.
30.
Houska
,
B.
,
Ferreau
,
H.
, and
Diehl
,
M.
,
2011
, “
Acado Toolkit-an Open-Source Framework for Automatic Control and Dynamic Optimization
,”
Optim. Control Appl. Met.
,
32
(
3
), pp.
298
312
.
31.
Andersson
,
J.
,
Akesson
,
J.
, and
Diehl
,
M.
,
2012
, “
Casadi: A Symbolic Package for Automatic Differentiation and Optimal Control
,”
Recent Advances in Algorithmic Differentiation
, Vol.
87
,
Springer
,
Berlin
, pp.
297
307
.
32.
Bellman
,
R.
,
2003
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
33.
Hwang
,
C.-L.
, and
Masud
,
A.
,
1979
,
Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey
,
Springer
, Berlin.
34.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
,
3rd ed.
,
Springer
,
London
.
35.
Kwon
,
D.-S.
, and
Book
,
W. J.
,
1994
, “
A Time-Domain Inverse Dynamics Tracking Control of a Single-Link Flexible Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
2
), pp.
193
200
.
36.
Brüls
,
O.
, and
Eberhard
,
P.
,
2008
, “
Sensitivity Analysis for Dynamic Mechanical Systems With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
74
(
13
), pp.
1897
1927
.
You do not currently have access to this content.