Inspired by fast model predictive control (MPC), a new nonlinear optimal command tracking technique is presented in this paper, which is named as “Tracking-oriented Model Predictive Static Programming (T-MPSP).” Like MPC, a model-based prediction-correction approach is adopted. However, the entire problem is converted to a very low-dimensional “static programming” problem from which the control history update is computed in closed-form. Moreover, the necessary sensitivity matrices (which are the backbone of the algorithm) are computed recursively. These two salient features make the computational process highly efficient, thereby making it suitable for implementation in real time. A trajectory tracking problem of a two-wheel differential drive mobile robot is presented to validate and demonstrate the proposed philosophy. The simulation studies are very close to realistic scenario by incorporating disturbance input, parameter uncertainty, feedback sensor noise, time delays, state constraints, and control constraints. The algorithm has been implemented on a real hardware and the experimental validation corroborates the simulation results.

References

References
1.
Kirk
,
D. E.
,
1970
,
Optimal Control Theory: An Introduction
,
Prentice Hall
, Englewood Cliffs, NJ, Chap. 6, pp.
329
413
.
2.
Betts
,
J. T.
,
2001
,
Practical Methods for Optimal Control Using Nonlinear Programming
(Advances in Design and Control),
Society for Industrial and Applied Mathematics
, Philadelphia, PA, Chap. 3 and 4, pp.
61
125
.
3.
Mayne
,
D.
,
Rawlings
,
J.
,
Rao
,
C.
, and
Scokaert
,
P.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.
4.
Rossiter
,
J.
,
2013
,
Model-Based Predictive Control: A Practical Approach
(Control Series),
CRC Press
, Boca Raton, FL, Chap. 1–4, pp.
1
84
.
5.
Camacho
,
E. F.
, and
Alba
,
C. B.
,
2003
,
Model Predictive Control
,
Springer Science & Business Media
, Heidelberg, Germany.
6.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2000
, “
An Overview of Nonlinear Model Predictive Control Applications
,”
Nonlinear Model Predictive Control
,
F.
Allgöwer
and
A.
Zheng
, eds.,
Birkhäuser
,
Basel, Switzerland
, pp.
369
392
.
7.
Mayne
,
D.
,
2000
, “
Nonlinear Model Predictive Control: Challenges and Opportunities
,”
Nonlinear Model Predictive Control
,
F.
Allgöwer
and
A.
Zheng
, eds.,
Birkhäuser
,
Basel
, pp.
23
44
.
8.
Magni
,
L.
,
Nicolao
,
G. D.
, and
Scattolini
,
R.
,
2001
, “
Output Feedback and Tracking of Nonlinear Systems With Model Predictive Control
,”
Automatica
,
37
(
10
), pp.
1601
1607
.
9.
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E.
,
2008
, “
MPC for Tracking Piecewise Constant References for Constrained Linear Systems
,”
Automatica
,
44
(
9
), pp.
2382
2387
.
10.
Ferramosca
,
A.
,
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
,
Castao
,
F.
, and
Camacho
,
E.
,
2011
, “
Optimal MPC for Tracking of Constrained Linear Systems
,”
Int. J. Syst. Sci.
,
42
(
8
), pp.
1265
1276
.
11.
Ferramosca
,
A.
,
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E. F.
,
2009
, “
MPC for Tracking of Constrained Nonlinear Systems
,”
48th IEEE Conference on Decision and Control (CDC) Held Jointly With 2009 28th Chinese Control Conference
, pp.
7978
7983
.
12.
Werbos
,
P. J.
,
1992
, “
Approximate Dynamic Programming for Real Time Control and Neural Modelling
,”
Handbook of Intelligent Control
,
Multi-Science Press
, New York, pp.
493
526
.
13.
Padhi
,
R.
, and
Kothari
,
M.
,
2009
, “
Model Predictive Static Programming: A Computationally Efficient Technique for Suboptimal Control Design
,”
Int. J. Innovative Comput., Inf. Control
,
5
(
2
), pp.
399
411
.http://www.ijicic.org/07-253-1.pdf
14.
Dwivedi
,
P. N.
,
Bhattacharya
,
A.
, and
Padhi
,
R.
,
2011
, “
Suboptimal Midcourse Guidance of Interceptors for High-Speed Targets With Alignment Angle Constraint
,”
J. Guid., Control, Dyn.
,
34
(
3
), pp.
860
877
.
15.
Halbe
,
O.
,
Raja
,
R. G.
, and
Padhi
,
R.
,
2014
, “
Robust Reentry Guidance of a Reusable Launch Vehicle Using Model Predictive Static Programming
,”
J. Guid., Control, Dyn.
,
37
(
1
), pp.
134
148
.
16.
Kumar
,
P.
, and
Padhi
,
R.
,
2014
, “
Extension of Model Predictive Static Programming for Reference Command Tracking
,”
IFAC Proc.
Vol.
,
47
(
1
), pp.
855
861
.
17.
Luenberger
,
D. G.
,
1969
,
Optimization by Vector Space Methods
,
Wiley
, New York.
18.
Wang
,
L.
,
2009
,
Model Predictive Control System Design and Implementation Using MATLAB
,
Springer Science & Business Media
, London, UK.
You do not currently have access to this content.