Additive manufacturing (AM) processes fabricate parts by adding material in a layer-by-layer fashion. In order to enable closed-loop process control—a major hurdle in the adoption of most AM processes—compact models suitable for control design and for describing the layer-by-layer material addition process are needed. This paper proposes a two-dimensional modeling framework whereby the deposition of the current layer is affected by both in-layer and layer-to-layer dynamics, both of which are driven by the state of the previous layer. The proposed framework can be used to describe phenomena observed in AM processes such as layer rippling and large defects in laser metal deposition (LMD) processes. Further, the proposed framework can be used to create two-dimensional dynamic models for the analysis of layer-to-layer stability and as a foundation for the design of layer-to-layer controllers for AM processes. In the application to LMD, a two-dimensional linear–nonlinear–linear (LNL) repetitive process model is proposed that contains a linear dynamic component, which describes the dynamic evolution of the process from layer to layer, cascaded with a static nonlinear component cascaded with another linear dynamic component, which describes the dynamic evolution of the process within a given layer. A methodology, which leverages the two-dimensional LNL structure, for identifying the model process parameters is presented and validated with quantitative and qualitative experimental results.

References

1.
Huang
,
Y.
, and
Leu
,
M.
,
2014
, “
Frontiers of Additive Manufacturing Research and Education
,” University of Florida/Center for Manufacturing Innovation, Gainesville, FL.
2.
Energetics Incorporated, National Institute of Standards and Technology
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” Energetics Incorporated/NIST, Columbia, MD.
3.
Bourell, D. L., Leu, M. C., and Rosen, D. W.,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” The University of Texas at Austin, Laboratory of Freeform Fabrication, Austin, TX.
4.
Optomec
, 2018, “
LENS Process Monitoring and Controls
,” Optomec, Albuquerque, NM.
5.
Sammons
,
P.
,
Bristow
,
D.
, and
Landers
,
R.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.
6.
Ruan
,
J.
,
Tang
,
L.
,
Liou
,
F.
, and
Landers
,
R.
,
2010
, “
Direct Three-Dimensional Layer Metal Deposition
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064502
.
7.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
, and
Hetzner
,
D.
,
1997
, “
The Direct Metal Deposition of H13 Tool Steel for 3-D Components
,”
J. Mater.
,
49
(
8
), pp.
55
60
.
8.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4–6
), pp.
397
414
.
9.
Atwood
,
C.
,
Griffith
,
M.
,
Harwell
,
L.
,
Schlienger
,
E.
,
Ensz
,
M.
,
Smugeresky
,
J.
,
Romero
,
T.
,
Greene
,
D.
, and
Reckaway
,
D.
,
1998
, “
Laser Engineered Net Shaping (LENS (TM)): A Tool for Direct Fabrication of Metal Parts
,”
17th International Congress on Applications of Lasers and Electro-Optics
, Orlando, FL, Nov. 16–19.
10.
Baufelt
,
B.
, and
Van der Biest
,
O.
,
2009
, “
Mechanical Properties of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition
,”
Sci. Technol. Adv. Mater.
,
10
(
1
), p.
015008
.
11.
Paul
,
C.
,
Ganesh
,
P.
,
Mishra
,
S.
,
Bhargava
,
P.
,
Negi
,
J.
, and
Nath
,
A.
,
2007
, “
Investigating Laser Rapid Manufacturing for Inconel-625 Components
,”
Opt. Laser Technol.
,
39
(
4
), pp.
800
805
.
12.
Peyre
,
P.
,
Aubry
,
P.
,
Fabbro
,
R.
, and
Longuet
,
A.
,
2008
, “
Analytical and Numerical Modeling of the Direct Metal Deposition Laser Process
,”
J. Phys. D
,
41
(
2
), p.
025403
.
13.
Doumanidis
,
C.
, and
Kwak
,
Y.-M.
,
2001
, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
45
52
.
14.
Pinkerton
,
A.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track Via Energy and Mass Balances
,”
J. Phys. D
,
37
(
14
), pp.
1885
1895
.
15.
Munjuluri
,
B.
,
2001
, “
Process Modeling, Monitoring and Control of Laser Metal Forming
,” Master's thesis, University of Missouri, Rolla, MO.
16.
Fathi
,
A.
,
Khajepuor
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3–4
), pp.
280
292
.
17.
Boddu
,
M.
,
Musti
,
S.
,
Landers
,
R.
,
Agarwal
,
S.
, and
Liou
,
F.
,
2001
, “
Empirical Modeling and Vision Based Control for Laser Aided Metal Deposition Process
,”
Solid Freeform Fabrication Symposium
, pp. 452–459.
18.
Sammons
,
P.
,
Bristow
,
D.
, and
Landers
,
R.
,
2014
, “
Frequency Domain Identification of a Repetitive Process Control Oriented Model for Laser Metal Deposition Processes
,”
International Symposium on Flexible Automation
, May 20–23, pp. 14–16.
19.
Sammons
,
P.
,
Bristow
,
D.
, and
Landers
,
R.
,
2014
, “
Control-Oriented Modeling of Laser Metal Deposition as a Repetitive Process
,” American Control Conference (
ACC
), Portland, OR, June 4–6, pp. 1817–1820.
20.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys.
,
100
(
2
), p.
024903
.
21.
Lei
,
Y.
,
Murakawa
,
H.
,
Shi
,
Y.
, and
Li
,
X.
,
2001
, “
Numerical Analysis of the Competitive Influence of Marangoni Flow and Evaporation on Heat Surface Temperature and Molten Pool Shape in Laser Surface Remelting
,”
Comput. Mater. Sci.
,
21
(
3
), pp.
276
290
.
22.
Picasso
,
M.
, and
Hoadley
,
A.
,
1994
, “
Finite Element Simulation of Laser Surface Treatments Including Convection in the Melt Pool
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
1
), pp.
61
83
.
23.
Hoadley
,
A.
, and
Rappaz
,
M.
,
1992
, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
,
23
(
5
), pp.
631
642
.
24.
Kaplan
,
A.
, and
Groboth
,
G.
,
2001
, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
609
614
.
25.
Steen
,
W.
,
Weerasinghe
,
V.
, and
Monson
,
P.
,
1986
, “
Some Aspects of the Formation of Laser Clad Tracks
,”
Proc. SPIE
,
0650
, pp. 226–234.
26.
Picasso
,
M.
,
Marsden
,
C.
,
Wagniere
,
J.
,
Frenk
,
A.
, and
Rappaz
,
M.
,
1994
, “
A Simple but Realistic Model for Laser Cladding
,”
Metall. Mater. Trans. B
,
25
(
2
), pp.
281
291
.
27.
Srivastava
,
D.
,
Chang
,
I.
, and
Loretto
,
M.
,
2001
, “
The Effect of Process Parameters and Heat Treatment on the Microstructure of Direct Laser Fabricated TiAl Alloy Samples
,”
Intermetallics
,
9
(
12
), pp.
1003
1013
.
28.
Lin
,
J.
,
1999
, “
A Simple Model of Powder Catchment Coaxial Laser Cladding
,”
Opt. Laser Technol.
,
31
(
3
), pp.
233
238
.
29.
Kang
,
B.
,
Waldvogel
,
J.
, and
Poulikakos
,
D.
,
1995
, “
Remelting Phenomena in the Process of Splat Solidification
,”
J. Mater. Sci.
,
30
(
19
), pp.
4912
4925
.
30.
Wang
,
S.-P.
,
Wang
,
G.-X.
, and
Matthys
,
E.
,
1998
, “
Melting and Resolidification of a Substrate in Contact With a Molten Metal: Operational Maps
,”
Int. J. Heat Transfer
,
41
(
10
), pp.
1177
1188
.
You do not currently have access to this content.