The full- and reduced-order fault detection filter design is examined for fault diagnosis in linear time-invariant (LTI) systems in the presence of noise and disturbances. The fault detection filter design problem is formulated as an H problem using a linear fractional transformation (LFT) framework and the solution is based on the bounded real lemma (BRL). Necessary and sufficient conditions for the existence of the fault detection filter are presented in the form of linear matrix inequalities (LMIs) resulting in a convex problem for the full-order filter design and a rank-constrained nonconvex problem for the reduced-order filter design. By minimizing the sensitivity of the filter residuals to noise and disturbances, the fault detection objective is fulfilled. A reference model can be incorporated in the design in order to shape the desired performance of the fault detection filter. The proposed fault detection and isolation (FDI) framework is applied to detect instrumentation and sensor faults in fluid transmission and pipeline systems. To this end, a lumped parameter framework for modeling infinite-dimensional fluid transient systems is utilized and a low-order model is obtained to pursue the instrumentation fault diagnosis objective. Full- and reduced-order filters are designed for sensor FDI. Simulations are conducted to assess the effectiveness of the proposed fault detection approach.

References

References
1.
Frank
,
P. M.
, and
Ding
,
X.
,
1997
, “
Survey of Robust Residual Generation and Evaluation Methods in Observer-Based Fault Detection Systems
,”
J. Process Control
,
7
(
6
), pp.
403
424
.
2.
Gertler
,
J.
,
1998
,
Fault Detection and Diagnosis in Engineering Systems
, CRC Press, New York.
3.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Patton
,
R. J.
,
2003
,
Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques
,
Springer-Verlag
,
London, UK
.
4.
Hwang
,
I.
,
Kim
,
S.
,
Kim
,
Y.
, and
Seah
,
C. E.
,
2010
, “
A Survey of Fault Detection, Isolation, and Reconfiguration Methods
,”
IEEE Trans. Control Syst. Technol.
,
18
(
3
), pp.
636
653
.
5.
Gao
,
Z.
,
Cecati
,
C.
, and
Ding
,
S. X.
,
2015
, “
A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3757
3767
.
6.
Varga
,
A.
,
2017
,
Solving Fault Diagnosis Problems: Linear Synthesis Techniques
, Springer International Publishing, New York.
7.
Venkatasubramanian
,
V.
,
Rengaswamy
,
R.
,
Yin
,
K.
, and
Kavuri
,
S. N.
,
2003
, “
A Review of Process Fault Detection and Diagnosis—Part I: Quantitative Model-Based Methods
,”
Comput. Chem. Eng.
,
27
(
3
), pp.
293
311
.
8.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Beghelli
,
S.
,
2000
, “
Diagnosis Techniques for Sensor Faults of Industrial Processes
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
848
855
.
9.
Qin
,
S. J.
, and
Li
,
W.
,
2001
, “
Detection and Identification of Faulty Sensors in Dynamic Processes
,”
AIChE J.
,
47
(
7
), pp.
1581
1593
.
10.
Van Eykeren
,
L.
, and
Chu
,
Q. P.
,
2014
, “
Sensor Fault Detection and Isolation for Aircraft Control Systems by Kinematic Relations
,”
Control Eng. Pract.
,
31
, pp.
200
210
.
11.
Davoodi
,
M.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2018
, “
A Single Dynamic Observer-Based Module for Design of Simultaneous Fault Detection, Isolation and Tracking Control Scheme
,”
Int. J. Control
,
91
(
3
), pp.
508
523
.
12.
Kim
,
J.
, and
Lee
,
H.
,
2011
, “
Sensor Fault Detection and Isolation Algorithm for a Continuous Damping Control System
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
10
), pp.
1347
1364
.
13.
Christophe
,
C.
,
Cocquempot
,
V.
, and
Jiang
,
B.
,
2004
, “
Link Between High-Gain Observer-Based and Parity Space Residuals for FDI
,”
Trans. Inst. Meas. Control
,
26
(
4
), pp.
325
337
.
14.
Stoustrup
,
J.
,
Grimble
,
M. J.
, and
Niemann
,
H.
,
1997
, “
Design of Integrated Systems for the Control and Detection of Actuator Sensor Faults
,”
Sensor Rev.
,
17
(
2
), pp.
138
149
.
15.
Abdalla
,
M.
,
Nobrega
,
E.
, and
Grigoriadis
,
K.
,
2008
, “
LMI-Based Filter Design for Fault Detection and Isolation Using a Reference Model
,”
Eng. Sci.
,
35
(
1
), pp.
35
43
.https://journals.ju.edu.jo/DirasatEng/article/view/702/700
16.
Duan
,
G.-R.
, and
Yu
,
H.-H.
,
2013
, LMIs in Control Systems: Analysis, Design and Applications, CRC Press, New York.
17.
Nobrega
,
E. G.
,
Abdalla
,
M. O.
, and
Grigoriadis
,
K. M.
,
2008
, “
Robust Fault Estimation of Uncertain Systems Using an LMI-Based Approach
,”
Int. J. Robust Nonlinear Control
,
18
(
18
), pp.
1657
1680
.
18.
Zhong
,
M.
,
Ding
,
S. X.
,
Lam
,
J.
, and
Wang
,
H.
,
2003
, “
An LMI Approach to Design Robust Fault Detection Filter for Uncertain LTI Systems
,”
Automatica
,
39
(
3
), pp.
543
550
.
19.
Guo
,
J.
,
Huang
,
X.
, and
Cui
,
Y.
,
2009
, “
Design and Analysis of Robust Fault Detection Filter Using LMI Tools
,”
Comput. Math. Appl.
,
57
(
11–12
), pp.
1743
1747
.
20.
Vandenberge
,
L.
, and
Boyd
,
S.
,
1996
, “
Semi-Definite Programming
,”
SIAM Rev.
,
38
(
1
), pp.
49
95
.
21.
Mohamed
,
N.
,
Jawhar
,
I.
,
Al-Jaroodi
,
J.
, and
Zhang
,
L.
,
2011
, “
Sensor Network Architectures for Monitoring Underwater Pipelines
,”
Sensors
,
11
(
11
), pp.
10738
10764
.
22.
Ruiz-Cárcel
,
C.
,
Cao
,
Y.
,
Mba
,
D.
,
Lao
,
L.
, and
Samuel
,
R. T.
,
2015
, “
Statistical Process Monitoring of a Multiphase Flow Facility
,”
Control Eng. Pract.
,
42
, pp.
74
88
.
23.
Bouzid
,
S.
, and
Ramdani
,
M.
,
2013
, “
Sensor Fault Detection and Diagnosis in Drinking Water Distribution Networks
,”
Eighth International Workshop on Systems, Signal Processing and Their Applications (WoSSPA)
, pp.
378
383
.
24.
Goodson
,
R. E.
, and
Leonard
,
R. G.
,
1972
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
474
482
.
25.
Hullender
,
D. A.
,
2016
, “
Alternative Approach for Modeling Transients in Smooth Pipe With Low Turbulent Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121202
.
26.
Matko
,
D.
, and
Geiger
,
G.
,
2002
, “
Models of Pipelines in Transient Mode
,”
Math. Comput. Modell. Dyn. Syst.
,
8
(
1
), pp.
117
136
.https://www.tandfonline.com/doi/abs/10.1076/mcmd.8.1.117.8341
27.
Stecki
,
J. S.
, and
Davis
,
D. C.
,
1986
, “
Fluid Transmission Lines-Distributed Parameter Models—Part 1: A Review of the State of the Art
,”
Proc. Inst. Mech. Eng., Part A
,
200
(
4
), pp.
215
228
.
28.
Skelton
,
R. E.
,
Iwasaki
,
T.
, and
Grigoriadis
,
K. M.
,
1998
, “
A Unified Algebraic Approach to Linear Control Design
,” Taylor and Francis, New York.
29.
Grigoriadis
,
K. M.
, and
Beran
,
E. B.
,
2000
, “
Alternating Projection Algorithms for Linear Matrix Inequality Problems With Rank Constraints
,”
Advances in Linear Matrix Inequality Approach to Control
,
L.
El Ghaoui
and
S.-I.
Niculescu
, eds., SIAM, Philadelphia, PA, pp.
251
267
.
30.
Fazel
,
M.
,
Hindi
,
H.
, and
Boyd
,
S. P.
,
2001
, “
A Rank Minimization Heuristic With Application to Minimum Order System Approximation
,”
American Control Conference
(
ACC
), Arlington, VA, June 25–27, pp.
4734
4739
.
31.
Grigoriadis
,
K. M.
, and
Watson
,
J. T.
,
1997
, “
Reduced-Order H and L2L Filtering Via Linear Matrix Inequalities
,”
IEEE Trans. Aerosp. Electron. Syst.
,
33
(
4
), pp.
1326
1338
.
32.
Van Schothorst
,
G.
,
1997
, “
Modelling of Long-Stroke Hydraulic Servo-Systems for Flight Simulator Motion Control and System Design
,” Ph.D. thesis, Technical University of Delft, Delft, The Netherlands.
33.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
3rd ed.
Springer, New York.
34.
Mäkinen
,
J.
,
Piché
,
R.
, and
Ellman
,
A.
,
1998
, “
Fluid Transmission Line Modeling Using a Variational Method
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
153
162
.
35.
Soumelidis
,
M. I.
,
Johnston
,
D. N.
,
Edge
,
K. A.
, and
Tilley
,
D. G.
,
2005
, “
A Comparative Study of Modelling Techniques for Laminar Flow Transients in Hydraulic Pipelines
,”
Sixth JFPS International Symposium on Fluid Power,
pp.
100
105
.
36.
Meziou
,
A.
,
Chaari
,
M.
,
Franchek
,
M.
,
Borji
,
R.
,
Grigoriadis
,
K.
, and
Tafreshi
,
R.
,
2016
, “
Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
10
), p.
101008
.
37.
Petalas
,
N.
, and
Aziz
,
K.
,
2000
, “
A Mechanistic Model for Multiphase Flow in Pipes
,”
J. Can. Pet. Technol.
,
39
(
6
), pp.
43
55
.
38.
Meziou
,
A.
,
Chaari
,
M.
,
Franchek
,
M.
,
Grigoriadis
,
K.
,
Tafreshi
,
R.
, and
Ebrahimi
,
B.
,
2014
, “
Subsea Production Two-Phase Flow Modeling and Control of Pipeline and Manifold Assemblies
,”
ASME
Paper No. DSCC2014-6081.
39.
Wassar
,
T.
,
Franchek
,
M. A.
, and
Gutierrez
,
J. A.
,
2017
, “
Reduced-Order Modelling of Transient Flow in Transmission Lines Using Distributed Lumped Parameters
,”
Int. J. Fluid Power
,
18
(
3
), pp.
153
166
.
40.
Oldenburger
,
R.
, and
Goodson
,
R. E.
,
1964
, “
Simplification of Hydraulic Line Dynamics by Use of Infinite Products
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
1
8
.
41.
Sonnad
,
J. R.
, and
Goudar
,
C. T.
,
2007
, “
Explicit Reformulation of the Colebrook-White Equation for Turbulent Flow Friction Factor Calculation
,”
Ind. Eng. Chem. Res.
,
46
(
8
), pp.
2593
2600
.
42.
Ke
,
L.
, and
Slattery
,
C.
,
2014
, “
Electromagnetic Flow Meters Achieve High Accuracy in Industrial Applications
,”
Analog Dialogue
,
48
(
1
), pp.
19
26
.http://www.analog.com/media/en/analog-dialogue/volume-48/number-1/articles/electromagnetic-flow-meters-achieve-high-accuracy.pdf
You do not currently have access to this content.