To make motion perception more realistic, a current-implemented classical washout motion cueing algorithm (CWMCA) is extended to a model predictive motion cueing algorithm (MPMCA) for a seven-cylinder pneumatically actuated Stewart platform. Through this enhancement, not only are potential predictive signals taken into account, but also comprehensive information and data sets relating to the mechanical limitations of the simulator platform. The significantly increased information content enables the calculation of far more specific targeted requirements for the platform. First, the platform kinematics are derived and its physical platform constraints are examined. Furthermore, the CWMCA is extended and transformed into a state space-based motion cueing algorithm for the purpose of setting up a linear quadratic MPMCA. Finally, the MPMCA is simulated and evaluated with respect to its degree of realism.

References

References
1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
pp.
371
378
.
2.
Young
,
L. R.
, and
Meiry
,
J. L.
,
1968
, “
A Revised Dynamic Otolith Model
,”
Aerospace Medicine
,
39
(6), pp. 606–608.
3.
Goldberg
,
J. M.
, and
Fernandez
,
C.
,
1971
, “
Physiology of Peripheral Neurons Innervating Semicircular Canals of the Squirrel Monkey. Response to Sinusoidal Stimulation and Dynamics of Peripheral Vestibular System
,”
J. Neurophysiol.
,
34
(
4
), pp.
661
675
.https://pdfs.semanticscholar.org/3ca8/c84ea45baf1e1f63c4be2a1cde4995a7d8ac.pdf
4.
Dagdelen
,
M.
,
Reymond
,
G.
, and
Kemeny
,
A.
,
2004
, “
MPC based Motion Cueing Algorithm—Develop, Application to ULTIMATE Driving Simulator
,”
Conférence Simulation de Conduite
, pp.
221
233
.
5.
Fang
,
Z.
, and
Kemeny
,
A.
,
2012
, “
Motion Cueing Algorithms for a Real-Time Automobile Driving Simulator
,”
Driving Simulation Conference
, Paris, France, Sept. 6–7, pp. 1–12.https://pdfs.semanticscholar.org/b57e/9b1716781318bb95ff5151cec7b35eba3605.pdf
6.
Baseggio
,
M.
,
Beghi
,
A.
,
Bruschetta
,
M.
,
Maran
,
F.
, and
Minen
,
D.
,
2011
, “
An MPC Approach to the Design of Motion Cueing Algorithms for Driving Simulators
,”
14th International IEEE Conference on Intelligent Transportation Systems
(
ITSC
), Washington, DC, Oct. 5–7, pp.
692
697
.
7.
Dagdelen
,
M.
,
Reymond
,
G.
,
Kemeny
,
A.
,
Bordier
,
M.
, and
Maïzi
,
N.
,
2009
, “
Model-Based Predictive Motion Cueing Strategy for Vehicle Driving Simulators
,”
Control Eng. Pract.
,
17
(
9
), pp.
995
1003
.
8.
Garrett
,
N. J. I.
, and
Best
,
M. C.
,
2013
, “
Model Predictive Driving Simulator Motion Cueing Algorithm With Actuator-Based Constraints
,”
Veh. Syst. Dyn.
,
51
(
8
), pp.
1151
1172
.
9.
Chen
,
S. H.
, and
Fu
,
L. C.
,
2011
, “
An Optimal Washout Filter Design With Fuzzy Compensation for a Motion Platform
,”
Proc. Int. Fed. Autom. Control
,
44
(
1
), pp.
8433
8438
.
10.
Venrooij
,
J.
,
Cleij
,
D.
,
Katliar
,
M.
,
Pretto
,
P.
,
Bülthoff
,
H. H.
,
Steffen
,
D.
,
Hoffmeyer
,
F. W.
, and
Schöner
,
H. P.
,
2016
, “
Comparison Between Filter- and Optimization-Based Motion Cueing in the Daimler Driving Simulator
,”
Driving Simulation Conference
, Paris, France, Sept. 7–9, pp.
31
38
.
11.
Bruschetta
,
M.
,
Maran
,
F.
,
Beghi
,
A.
, and
Minen
,
D.
,
2016
, “
An MPC-Based Motion Cueing Implementation With Time-Varying Prediction and Drivers Skills Characterization
,”
Driving Simulation Conference
, Paris, France, Sept. 7–9, pp.
11
20
.
12.
Sivan
,
R.
,
Ish-Shalom
,
J.
, and
Huang
,
J. K.
,
1982
, “
An Optimal Control Approach to the Design of Moving Flight Simulators
,”
Syst., Man Cybern., IEEE Trans.
,
12
(
6
), pp.
818
827
.
13.
Chang
,
Y.
,
H.
,
Liao
,
C.
,
S.
, and
Chieng
,
W. H.
,
2009
, “
Optimal Motion Cueing for 5-DOF Motion Simulations Via a 3-DOF Motion Simulator
,”
Control Eng. Pract.
,
17
(
1
), pp.
170
184
.
14.
Pradipta
,
J.
,
Klünder
,
M.
,
Weickgenannt
,
M.
, and
Sawodny
,
O.
,
2013
, “
Development of a Pneumatically Driven Flight Simulator Stewart Platform Using Motion and Force Control
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, Australia, July 9–12, pp.
158
163
.
15.
Pradipta
,
J.
,
Knierim
,
K. L.
, and
Sawodny
,
O.
,
2015
, “
Force Trajectory Generation for the Redundant Actuator in a Pneumatically Actuated Stewart Platform
,”
Sixth International Conference on Automation, Robotics and Applications
(
ICARA
), Queenstown, New Zealand, Feb. 17–19, pp.
525
530
.
16.
Pradipta
,
J.
, and
Sawodny
,
O.
,
2016
, “
Actuator Constrained Motion Cueing Algorithm for a Redundantly Actuated Stewart Platform
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061007
.
17.
Heimann
,
B.
,
Gerth
,
W.
, and
Popp
,
K.
,
2007
,
Mechatronik – Komponenten—Methoden—Beispiele
,
3nd ed.
,
Leibniz Universität Hannover/Carl Hanser Verlag
,
München/Wien
, Germany.
18.
Fischer
,
M.
,
2009
, “
Motion-Cueing-Algorithmen für eine realitätsnahe Bewegungssimulation
,” Berichte aus dem DLR-Institut für Verkehrssystemtechnik, 5.
19.
Knierim
,
K. L.
, and
Sawodny
,
O.
,
2015
, “
Tool-Center-Point Control of the {KAI} Manipulator Using Constrained {QP} Optimization
,”
Mechatronics
,
30
, pp.
85
93
.
20.
Pradipta
,
J.
, and
Sawodny
,
O.
,
2016
, “
ServoFlight: Pneumatically Actuated Full Flight Simulator
,”
Int. J. Fluid Power
,
17
(
1
), pp.
49
64
.
21.
Reymond
,
G.
, and
Kemeny
,
A.
,
2000
, “
Motion Cueing in the Renault Driving Simulator
,”
Veh. Syst. Dyn.
,
34
(
4
), pp.
249
259
.
22.
Ferreau
,
H. J.
,
Kirches
,
C.
,
Potschka
,
A.
,
Bock
,
H. G.
, and
Diehl
,
M.
,
2014
, “
qpOASES: A Parametric Active-Set Algorithm for Quadratic Programming
,”
J. Math. Program. Comput.
,
6
(
4
), pp.
327
363
.
23.
Kassera
,
W.
,
2015
,
Motorflug Kompakt—Das Grundwissen Zur Privatpilotenlizenz
,
Motorbuch Verlag
,
Stuttgart, Germany
, p.
126
.
You do not currently have access to this content.