In this paper, a mathematical model to simulate the pressure and flow rate characteristics of a spool valve is derived. To improve the simulation accuracy, the discharge coefficient through the spool valve ports is assumed to be a function of both the Reynolds number and the orifice geometry rather than treating it as a constant. Parameters of the model are determined using the data obtained by computational fluid dynamics (CFD) analyses conducted on two-dimensional axisymmetric domains using ANSYS Fluent 15® commercial software. For turbulence modeling, shear stress transport (SST) k–ω model is preferred after a comparison of performance with the other available turbulence model options. The resulting model provides consistent pressure and flow rate estimations with CFD analyses and a smooth transition between different geometrical conditions. The ultimate aim of this study is to fulfill the need for a model to precisely determine the geometrical tolerances of spool valve components for optimum performance. Estimations of the developed model is compared with the experimental data of a spool valve, and the model is proved to be able to accurately estimate the maximum leakage flow rate, the pressure sensitivity, and the shapes of leakage flow/load pressure curves.

References

References
1.
Jian
,
H.
,
Wei
,
W.
,
Li
,
H.
, and
Yan
,
Q.
,
2018
, “
Optimization of a Pressure Control Valve for High Power Automatic Transmission Considering Stability
,”
Mech. Syst. Signal Process.
,
101
, pp.
182
196
.
2.
Pournazeri
,
M.
,
Khajepour
,
A.
, and
Huang
,
Y.
,
2017
, “
Development of a New Fully Flexible Hydraulic Variable Valve Actuation System for Engines Using Rotary Spool Valves
,”
Mechatronics
,
46
, pp.
1
20
.
3.
Pournazeri
,
M.
,
Khajepour
,
A.
, and
Huang
,
Y.
,
2018
, “
Improving Energy Efficiency and Robustness of a Novel Variable Valve Actuation System for Engines
,”
Mechatronics
,
50
, pp.
121
133
.
4.
Shang
,
Y.
,
Liu
,
X.
,
Jiao
,
Z.
, and
Wu
,
S.
,
2018
, “
An Integrated Load Sensing Valve-Controlled Actuator Based on Power-by-Wire for Aircraft Structural Test
,”
Aerosp. Sci. Technol.
,
77
, pp.
117
128
.
5.
Deng
,
W.
,
Yao
,
J.
, and
Ma
,
D.
,
2017
, “
Robust Adaptive Precision Motion Control of Hydraulic Actuators With Valve Dead-Zone Compensation
,”
ISA Trans.
,
70
, pp.
269
278
.
6.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
7.
Speckhart
,
F. H.
,
1972
, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
447
453
.
8.
Ellman
,
A.
,
1998
, “
Leakage Behaviour of Four-Way Servovalve
,”
Fluid Power Syst. Technol.
,
5
, pp.
163
167
.
9.
Eryilmaz
,
B.
, and
Wilson
,
B. H.
,
1999
, “
Combining Leakage and Orifice Flows in a Hydraulic Servovalve Model
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
576
579
.
10.
Feki
,
M.
, and
Richard
,
E.
,
2015
, “
Including Leakage Flow in the Servovalve Static Model
,”
Int. J. Modell. Simul.
,
25
(
1
), pp.
51
56
.
11.
Kalyoncu
,
M.
, and
Haydim
,
M.
,
2009
, “
Mathematical Modelling and Fuzzy Logic Based Position Control of an Electrohydraulic Servosystem With Internal Leakage
,”
Mechatronics
,
19
(
6
), pp.
847
858
.
12.
Gordic
,
D.
,
Babic
,
M.
,
Milanovic
,
D.
, and
Savic
,
S.
,
2011
, “
Spool Valve Leakage Behaviour
,”
Arch. Civ. Mech. Eng.
,
11
(
4
), pp.
859
866
.
13.
Pan
,
X.
,
Wang
,
G.
, and
Lu
,
Z.
,
2011
, “
Flow Field Simulation and a Flow Model of Servo-Valve Spool Valve Orifice
,”
Energy Convers. Manage.
,
52
(
10
), pp.
3249
3256
.
14.
Posa
,
A.
,
Oresta
,
P.
, and
Lippolis
,
A.
, “
Analysis of a Directional Hydraulic Valve by a Direct Numerical Simulation Using an Immersed-Boundary Method
,”
Energy Convers. Manage.
,
6
, pp.
497
506
.
15.
Valdes
,
J. R.
,
Rodriguez
,
J. M.
,
Saumell
,
J.
, and
Pütz
,
T.
,
2014
, “
A Methodology for the Parametric Modelling of the Flow Coefficients and Flow Rate in Hydraulic Valves
,”
Energy Convers. Manage.
,
88
, pp.
598
611
.
16.
Valdes
,
J. R.
,
Miana
,
M. J.
,
Nunez
,
J. L.
, and
Pütz
,
T.
,
2008
, “
Reduced Order Model for Estimation of Fluid Flow and Flow Forces in Hydraulic Proportional Valves
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1517
29
.
17.
Mondal
,
M. K.
,
Manna
,
N. K.
, and
Saha
,
R.
,
2014
, “
Study of Leakage Flow Through a Spool Valve Under Blocked-Actuator Port Condition—Simulation and Experiment
,”
J. Mech. Eng. Sci.
,
228
(
8
), pp.
1405
1417
.
18.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2016
, “
A Mathematical Model to Analyze the Torque Caused by Fluid–Solid Interaction on a Hydraulic Valve
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061103
.
19.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
, and
Stelson
,
K. A.
,
2017
, “
A Modeling Approach to Study the Fluid Dynamic Forces Acting on the Spool of a Flow Control Valve
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011103
.
20.
Amirante
,
R.
,
Moscatelli
,
P.
, and
Catalano
,
L. A.
,
2007
, “
Evaluation of the Flow Forces on a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
48
(
3
), pp.
942
953
.
21.
Amirante
,
R.
,
Catalano
,
L. A.
, and
Tamburrano
,
P.
,
2014
, “
The Importance of a Full 3D Fluid Dynamic Analysis to Evaluate the Flow Forces in a Hydraulic Directional Proportional Valve
,”
Eng. Comput.
,
31
(
5
), pp.
898
922
.
22.
Palau-Salvador
,
G.
,
González-Altozano
,
P.
, and
Arviza-Valverde
,
J.
,
2008
, “
Three-Dimensional Modeling and Geometrical Influence on the Hydraulic Performance of a Control Valve
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011102
.
23.
Anderson
,
W.
,
1988
,
Controlling Electrohydraulic Systems
,
Marcel Dekker
,
New York
.
24.
ANSYS, Inc,
2013
, “
ANSYS Fluent 15 User's Guide
,”
15th ed.
,
ANSYS
, Canonsburg, PA.
25.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2015
,
The Finite Volume Method in Computational Fluid Dynamics
,
Springer International Publishing
,
Cham, Switzerland
.
26.
SAE International,
1993
, “
SAE ARP 490: Electrohydraulic Servovalves
,”
2nd ed.
,
SAE International
, Warrendale, PA.
You do not currently have access to this content.