Abstract

In this study, an adaptive feed-forward cancellation (AFC) with frequency estimation algorithm has been developed to compensate for periodic disturbance at an arbitrary frequency. Conventional AFC was developed to compensate for periodic disturbance at a fixed frequency and cannot compensate for the disturbance in which the frequency varies in real-time. The proposed method can estimate the frequency of the disturbance in real-time by using the input and output signals of the AFC. It can compensate for the periodic disturbance at an arbitrary frequency. In addition, the stability of the feedback control system with the proposed AFC can be optimized at any frequency based on the vector locus of the open-loop characteristic on the Nyquist diagram. The effectiveness of the proposed AFC was confirmed in experiments compensating for whirling vibration, whose frequency varies in real-time in rotating machinery. The proposed AFC can estimate the frequency of the disturbance automatically and compensate for this adequately.

References

References
1.
Unbehauen
,
H.
,
2009
,
Control Systems, Robotics and Automation—Volume I: System Analysis and Control: Classical Approaches-I
,
EOLSS Publications
,
Paris, France
.
2.
Unbehauen
,
H.
,
2009
,
Control Systems, Robotics and Automation—Volume II: System Analysis and Control: Classical Approaches-II
,
EOLSS Publications
,
Paris, France
.
3.
Unbehauen
,
H.
,
2009
,
Control Systems, Robotics and Automation—Volume III: System Analysis and Control: Classical Approaches-III
,
EOLSS Publications
,
Paris, France
.
4.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A.
,
1992
,
Feedback Control Theory
,
Macmillan
,
London
.
5.
Bateson
,
R. N.
,
1996
,
Introduction to Control System Technology
,
Prentice Hall
,
London
.
6.
Bars
,
R.
,
Colaneri
,
P.
,
de Souza
,
C. E.
,
Dugard
,
L.
,
Allgöwer
,
F.
,
Anatolii
,
K.
, and
Carsten
,
S.
,
2006
, “
Theory, Algorithms and Technology in the Design of Control Systems
,”
Annu. Rev. Control
,
30
(
1
), pp.
19
30
.10.1016/j.arcontrol.2006.01.006
7.
Takatsu
,
H.
, and
Itoh
,
T.
,
1999
, “
Future Needs for Control Theory in Industry-Report of the Control Technology Survey in Japanese Industry
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
298
304
.10.1109/87.761050
8.
Guo
,
L.
, and
Cao
,
S.
,
2014
, “
Anti-Disturbance Control Theory for Systems With Multiple Disturbances: A Survey
,”
ISA Trans.
,
53
(
4
), pp.
846
849
.10.1016/j.isatra.2013.10.005
9.
Lee
,
Y.
,
Lee
,
S. H.
, and
Chung
,
C.
,
2018
, “
LPV H Control With Disturbance Estimation for Permanent Magnet Synchronous Motors
,”
IEEE Trans. Ind. Electron.
,
65
(
1
), pp.
488
497
.10.1109/TIE.2017.2721911
10.
Bodson
,
M.
,
Sacks
,
A.
, and
Khosla
,
P. K.
,
1994
, “
Harmonic Generation in Adaptive Feedforward Cancellation Schemes
,”
IEEE Trans. Autom. Control
,
39
(
9
), pp.
1939
1944
.10.1109/9.317130
11.
Sacks
,
A.
,
Bodson
,
M.
, and
Khosla
,
P. K.
,
1993
, “
Experimental Results of Adaptive Periodic Disturbance Cancellation in a High Performance Magnetic Disk Drive
,”
American Control Conference
, San Francisco, CA, June 2–4, pp.
686
690
.10.23919/ACC.1993.4792947
12.
Yabui
,
S.
,
Okuyama
,
A.
,
Atsumi
,
T.
, and
Odai
,
M.
,
2013
, “
Development of Optimized Adaptive Feed-Forward Cancellation With Damping Function for Head Positioning System in Hard Disk Drives
,”
J. Adv. Mech. Des., Syst., Manuf.
,
7
(
1
), pp.
39
51
.10.1299/jamdsm.7.39
13.
Liu
,
J. J.
, and
Yangt
,
Y. P.
,
2004
, “
Comparison of AFC and FACT Method for Periodic Disturbance Suppression in Optical Disk Drives
,”
IEEE Industrial Electronics Society
(
IECON
), Busan, South Korea, Nov. 2–6, pp.
1987
1992
.10.1109/IECON.2004.1432100
14.
Yabui
,
S.
,
Kajiwara
,
I.
,
Nakamura
,
S.
, and
Atsumi
,
T.
,
2013
, “
Improvement of Convergence for Adaptive Feed-Forward Cancellation Using Variable Gains in a Head Positioning System of Hard Disk Drives
,”
J. Adv. Mech. Des., Syst., Manuf.
,
7
(
6
), pp.
903
918
.10.1299/jamdsm.7.903
15.
Yabui
,
S.
,
Okuyama
,
A.
,
Kobayashi
,
M.
, and
Atsumi
,
T.
,
2012
, “
Optimization of Adaptive Feedforward Repeatable Run-Out Cancellation for Positioning Control System of Hard Disk Drives
,”
Microsyst. Technol.
,
18
(
9–10
), pp.
1703
1709
.10.1007/s00542-012-1613-y
16.
Zhang
,
H.
,
Huang
,
X.
, and
Peng
,
G.
,
2006
, “
A Novel Adaptive Feedforward Compensation Algorithm for Hard Disk Drive
,”
IEEE
International Conference Mechatronics and Automation
, Luoyang, Henan, June 25–28, pp.
1275
1279
.10.1109/ICMA.2006.257810
17.
Okuyama
,
A.
,
Yabui
,
S.
, and
Atsumi
,
T.
,
2012
, “
A Study on Adaptive Feedforward Cancellation Schemes Considering Phase Condition
,”
IEEJ Trans. Ind. Appl.
,
132
(
10
), pp.
1009
1015
(in Japanese).10.1541/ieejias.132.1009
18.
Lynn
,
D. W.
,
1990
, “
Frequency Domain FIR and IIR Adaptive Filters
,”
Second NASA SERC Symposium on VLSI Design
, Moscow, ID, Nov. 6, pp.
3.4.1
3.4.37
.
19.
Shunsuke
,
K.
,
Kumamoto
,
Y.
,
Abe
,
M.
, and
Masayuki
,
K.
,
2011
, “
Adaptive Detection of Narrowband Signals Using Frequency-Transformation-Based Variable Digital Filters
,”
Asia Pacific Signal and Information Processing Association Annual Summit and Conference
, Hong Kong, Oct. 18–21, p.
6
.
20.
Landau
,
I. D.
,
Airimitoaie
,
T. B.
, and
Alma
,
M.
,
2014
, “
Adaptive Feedforward Compensation Algorithms for Active Vibration Control With Mechanical Coupling and Local Feedback—A Unified Approach
,” The Center for Direct Scientific Communication, Villeurbanne, France, accessed Nov. 20, 2018, https://hal.archives-ouvertes.fr/hal-00922912
21.
Richter
,
M.
,
Schneider
,
K.
,
Walser
,
D.
, and
Sawodny
,
O.
,
2014
, “
Real-Time Heave Motion Estimation Using Adaptive Filtering Techniques
,”
19th World Congress of the International Federation of Automatic Control
, Cape Town, South Africa, Aug. 24–29, pp.
10119
10125
.
22.
Wang
,
C. S.
,
Sha
,
C. Y.
,
Mei
,
S.
, and
Hu Yu
,
K.
,
2017
, “
An Algorithm to Remove Noise From Locomotive Bearing Vibration Signal Based on Self-Adaptive EEMD Filter
,”
J. Cent. South Univ.
,
24
(
2
), pp.
478
488
.10.1007/s11771-017-3450-8
23.
Wang
,
Y.
,
Zheng
,
Q.
,
Zhang
,
H.
, and
Chen
,
H.
,
2018
, “
Research on Predictive Control of Helicopter/Engine Based on LMS Adaptive Torsional Vibration Suppression
,”
J. Low Freq. Noise, Vib. Act. Control
,
37
(
4
), pp.
1151
1163
.10.1177/1461348418790495
24.
Kisaka
,
M.
,
2006
, “
Adaptive Notch Filter by Using a Frequency Chasing Filter
,”
Technical Meeting on Industrial Instrumentation and Control
, Tokyo, Japan, pp.
27
30
(in Japanese).
25.
Alonso
,
C. A.
,
1983
, “
Real Time Digital Control Applications 1st Edition
,”
IFAC/IFIP Symposium
, Guadalajara, Mexico, Jan. 17–19, p.
656
.
26.
Vance John
,
M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley
,
New York
.
27.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
28.
Kumar
,
K. B.
,
Diwakar
,
G.
, and
Satynarayana
,
M. R. S.
,
2012
, “
Determination of Unbalance in Rotating Machine Using Vibration Signature Analysis
,”
Int. J. Mod. Eng. Res.
,
2
(
5
), pp.
3415
3421
.
29.
Setiawan
,
J. D.
,
Mukherjee
,
R.
, and
Maslen
,
E. H.
,
2001
, “
Adaptive Compensation of Sensor Runout for Magnetic Bearings With Uncertain Parameters: Theory and Experiments
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
2
), pp.
211
218
.10.1115/1.1369362
30.
Setiawan
,
J. D.
,
Mukherjee
,
R.
, and
Maslen
,
E. H.
,
2002
, “
Synchronous Sensor Runout and Unbalance Compensation in Active Magnetic Bearings Using Bias Current Excitation
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
14
24
.10.1115/1.1435644
31.
Mingsian
,
R. B.
,
Jeng
,
J.
, and
Chen
,
C.
,
2002
, “
Adaptive Order Tracking Technique Using Recursive Least-Square Algorithm
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
502
511
.10.1115/1.1501301
32.
Yoon
,
H.
,
Bateman
,
B. E.
, and
Agrawal
,
B. N.
,
2011
, “
Laser Beam Jitter Control Using Recursive-Least-Squares Adaptive Filters
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
4
), p.
041001
.10.1115/1.4003372
33.
Tian
,
S.
, and
Qian
,
Z.
,
2015
, “
Planetary Gearbox Fault Feature Enhancement Based on Combined Adaptive Filter Method
,”
J. Adv. Mech. Eng.
,
7
(
12
), pp.
1
12
.10.1177/1687814015620325
34.
Shahsavari
,
B.
,
Keikha
,
E.
,
Zhang
,
F.
, and
Horowitz
,
R.
,
2015
, “
Adaptive Repetitive Control Design With Online Secondary Path Modeling and Application to Bit-Patterned Media Recording
,”
IEEE Trans. Magn.
,
51
(
4
), pp.
1
8
.10.1109/TMAG.2014.2364737
35.
Faris
,
E.
,
David
,
M.
, and
Greaves
,
M.
,
2017
, “
Bearing Signal Separation Enhancement With Application to a Helicopter Transmission System
,”
J. Aerosp. Eng.
,
30
(
5
), p.
26
.10.2197/ipsjjip.27.33
36.
Suwandi
,
B.
,
Kitasuka
,
T.
, and
Aritsugi
,
M.
,
2019
, “
Vehicle Vibration Error Compensation on IMU-Accelerometer Sensor Using Adaptive Filter and Low-Pass Filter Approaches
,”
J. Inf. Process.
,
27
, pp.
33
40
.10.1299/jamdsm.2014jamdsm0016
37.
Yabui
,
S.
,
Okuyama
,
A.
, and
Takenori
,
A.
,
2013
, “
A Study of Equivalence Between AFC and Feedback Controller With Resonant Filter
,”
SICE Annual Conference
, Nagoya, Japan, Sept. 14–17, pp.
2139
2143
.
38.
Yabui
,
S.
,
Okuyama
,
A.
,
Atsumi
,
T.
, and
Kajiwara
,
I.
,
2014
, “
A Study of Equivalence Between Adaptive Learning and Loop Shaping Methods for Disturbance Compensation
,”
J. Adv. Mech. Des., Syst., Manuf.
,
8
(
3
), pp.
1
14
.
39.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
580
586
.10.1109/87.531924
40.
Fang
,
J.
,
Xu
,
X.
, and
Xie
,
J.
,
2015
, “
Active Vibration Control of Rotor Imbalance in Active Magnetic Bearing Systems
,”
J. Vib. Control
,
21
(
4
), pp.
684
700
.10.1177/1077546313488792
41.
Bu
,
W. S.
,
Lu
,
C.
,
Zhang
,
H.
,
Xiao
,
J.
, and
Li
,
X.
,
2016
, “
Compensation and Control of Bearingless Induction Motor's Unbalanced Exciting Force Based on LMS Filter
,”
Int. J. Control Autom.
,
9
(
2
), pp.
81
92
.10.14257/ijca.2016.9.2.09
42.
Kato
,
J.
,
Takagi
,
K.
, and
Inoue
,
T.
,
2016
, “
On the Stability Analysis of Active Magnetic Bearing With Parametric Uncertainty and Position Tracking Control
,”
ASME
Paper No. IMECE2016-66603.10.1115/IMECE2016-66603
43.
Inoue
,
T.
,
Ishida
,
Y.
, and
Murakami
,
S.
,
2005
, “
Nonlinear Vibration Analysis and Experiments of a Vertical Rigid Rotor-Magnetic Bearing System (Case Considering the Delay of Control Force)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
71
(
707
), pp.
2106
2112
(in Japanese).10.1299/kikaic.71.2106
44.
Inoue
,
T.
, and
Sugawara
,
Y.
,
2010
, “
Nonlinear Vibration Analysis of a Rigid Rotating Shaft Supported by the Magnetic Bearing (Influence of the Integral Feedback in the PID Control of the Vertical Shaft)
,”
J. Syst. Des. Dyn.
,
4
(
3
), pp.
471
483
.10.1299/jsdd.4.471
45.
Lindlau
,
J. D.
, and
Knospe
,
C. R.
,
2002
, “
Feedback Linearization of an Active Magnetic Bearing With Voltage Control
,”
IEEE Trans. Control Syst. Technol.
,
10
(
1
), pp.
21
31
.10.1109/87.974335
46.
Chen
,
M.
, and
Knospe
,
C. R.
,
2005
, “
Feedback Linearization of Active Magnetic Bearings: Current-Mode Implementation
,”
IEEE/ASME Trans. Mechatronics
,
10
(
6
), pp.
632
639
.10.1109/TMECH.2005.859824
You do not currently have access to this content.