Abstract

This paper considers the finite time path-following control problem for an underactuated surface vessel subject to parametric uncertainties, unknown disturbances, and involving input-control saturation. A finite time command filtered backstepping approach is adopted as the main control framework along with the first-order sliding mode differentiator introduced to compute the derivatives of virtual control laws, and the analytical computational burden in the backstepping control is reduced for the design of the control for the underactuated surface vessel. A rigorous proof of the finite time stability of the closed-loop system is derived by utilizing the Lyapunov method. Furthermore, in order to avoid obstacles, a local path replanning technique is designed based on a repulsive potential function that acts directly on the original desired path. The effectiveness of the proposed strategy is validated through numerical simulations.

References

References
1.
Bao-Li
,
M.
, and
Wen-Jing
,
X.
,
2013
, “
Global Asymptotic Trajectory Tracking and Point Stabilization of Asymmetric Underactuated Ships With Non-Diagonal Inertia/Damping Matrices
,”
Int. J. Adv. Rob. Syst.
,
10
(
9
), p.
336
.10.5772/56671
2.
Ghommam
,
J.
,
Mnif
,
F.
,
Benali
,
A.
, and
Derbel
,
N.
,
2006
, “
Asymptotic Backstepping Stabilization of an Underactuated Surface Vessel
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1150
1157
.10.1109/TCST.2006.880220
3.
Wenjing
,
X.
, and
Baoli
,
M.
,
2015
, “
Robust Global Uniform Asymptotic Stabilization of Underactuated Surface Vessels With Unknown Model Parameters
,”
Int. J. Robust Nonlinear Control
,
25
(
7
), pp.
1037
1050
.10.1002/rnc.3129
4.
Zhang
,
Z.
, and
Wu
,
Y.
,
2015
, “
Further Results on Global Stabilisation and Tracking Control for Underactuated Surface Vessels With Non-Diagonal Inertia and Damping Matrices
,”
Int. J. Control
,
88
(
9
), pp.
1679
1692
.10.1080/00207179.2015.1013061
5.
Sun
,
Z.
,
Zhang
,
G.
,
Yi
,
B.
, and
Zhang
,
W.
,
2017
, “
Practical Proportional Integral Sliding Mode Control for Underactuated Surface Ships in the Fields of Marine Practice
,”
Ocean Eng.
,
142
, pp.
217
223
.10.1016/j.oceaneng.2017.07.010
6.
Zheng
,
Z.
,
Jin
,
C.
,
Zhu
,
M.
, and
Sun
,
K.
,
2017
, “
Trajectory Tracking Control for a Marine Surface Vessel With Asymmetric Saturation Actuators
,”
Rob. Auton. Syst.
,
97
, pp.
83
91
.10.1016/j.robot.2017.08.005
7.
Do
,
K. D.
, and
Pan
,
J.
,
2006
, “
Robust Path-Following of Underactuated Ships: Theory and Experiments on a Model Ship
,”
Ocean Eng.
,
33
(
10
), pp.
1354
1372
.10.1016/j.oceaneng.2005.07.011
8.
Do
,
K. D.
, and
Pan
,
J.
,
2006
, “
Global Robust Adaptive Path Following of Underactuated Ships
,”
Automatica
,
42
(
10
), pp.
1713
1722
.10.1016/j.automatica.2006.04.026
9.
Fossen
,
T. I.
,
Pettersen
,
K. Y.
, and
Galeazzi
,
R.
,
2015
, “
Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of Drift Forces
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
820
827
.10.1109/TCST.2014.2338354
10.
Lekkas
,
A. M.
, and
Fossen
,
T. I.
,
2014
, “
Integral Los Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2287
2301
.10.1109/TCST.2014.2306774
11.
Miao
,
J.
,
Wang
,
S.
,
Zhao
,
Z.
,
Li
,
Y.
, and
Tomovic
,
M. M.
,
2017
, “
Spatial Curvilinear Path Following Control of Underactuated Auv With Multiple Uncertainties
,”
ISA Trans.
,
67
, pp.
107
130
.10.1016/j.isatra.2016.12.005
12.
Paliotta
,
C.
,
Lefeber
,
E.
,
Pettersen
,
K. Y.
,
Pinto
,
J.
,
Costa
,
M.
,
de Figueiredo
,
J. T.
, and
de Sousa
,
B.
,
2018
, “
Trajectory Tracking and Path Following for Underactuated Marine Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
27
(
4
), pp.
1423
1437
.10.1109/TCST.2018.2834518
13.
Yi
,
B.
,
Qiao
,
L.
, and
Zhang
,
W.
,
2016
, “
Two-Time Scale Path Following of Underactuated Marine Surface Vessels: Design and Stability Analysis Using Singular Perturbation Methods
,”
Ocean Eng.
,
124
, pp.
287
297
.10.1016/j.oceaneng.2016.07.006
14.
Do
,
K. D.
,
2015
, “
Path-Tracking Control of Underactuated Ships Under Tracking Error Constraints
,”
J. Mar. Sci. Appl.
,
14
(
4
), pp.
343
354
.10.1007/s11804-015-1329-3
15.
Zheng
,
Z.
, and
Feroskhan
,
M.
,
2017
, “
Path Following of a Surface Vessel With Prescribed Performance in the Presence of Input Saturation and External Disturbances
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2564
2575
.10.1109/TMECH.2017.2756110
16.
Zheng
,
Z.
,
Sun
,
L.
, and
Xie
,
L.
,
2018
, “
Error-Constrained Los Path Following of a Surface Vessel With Actuator Saturation and Faults
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
48
(
10
), pp.
1794
1805
.10.1109/TSMC.2017.2717850
17.
Xie
,
W.
,
Cabecinhas
,
D.
,
Cunha
,
R.
, and
Silvestre
,
C.
,
2018
, “
Robust Motion Control of an Underactuated Hovercraft
,”
IEEE Trans. Control Syst. Technol.
epub.10.1109/TCST.2018.2862861
18.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.10.1137/S0363012997321358
19.
Hong
,
Y.
,
2002
, “
Finite-Time Stabilization and Stabilizability of a Class of Controllable Systems
,”
Syst. Control Lett.
,
46
(
4
), pp.
231
236
.10.1016/S0167-6911(02)00119-6
20.
Wang
,
N.
,
Qian
,
C.
,
Sun
,
J.
, and
Liu
,
Y.
,
2016
, “
Adaptive Robust Finite-Time Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1454
1462
.10.1109/TCST.2015.2496585
21.
Li
,
T.
,
Zhao
,
R.
,
Chen
,
C. L. P.
,
Fang
,
L.
, and
Liu
,
C.
,
2018
, “
Finite-Time Formation Control of Under-Actuated Ships Using Nonlinear Sliding Mode Control
,”
IEEE Trans. Cybern.
,
48
(
11
), pp.
3243
3253
.10.1109/TCYB.2018.2794968
22.
Wang
,
X.
, and
Li
,
S.
,
2012
, “
Finite-Time Trajectory Tracking Control of Under-Actuated Autonomous Surface Vessels Based on Non-Singular Terminal Sliding Mode
,”
Aust. J. Electr. Electron. Eng.
,
9
(
3
), pp.
235
246
.10.1080/1448837X.2012.11464328
23.
Yu
,
J.
,
Shi
,
P.
, and
Zhao
,
L.
,
2018
, “
Finite-Time Command Filtered Backstepping Control for a Class of Nonlinear Systems
,”
Automatica
,
92
, pp.
173
180
.10.1016/j.automatica.2018.03.033
24.
Do
,
K. D.
, and
Pan
,
J.
,
2006
, “
Underactuated Ships Follow Smooth Paths With Integral Actions and Without Velocity Measurements for Feedback: Theory and Experiments
,”
IEEE Trans. Contr. Syst. Technol.
,
14
(
2
), pp.
308
322
.10.1109/TCST.2005.863665
25.
Huang
,
X.
,
Lin
,
W.
, and
Yang
,
B.
,
2005
, “
Global Finite-Time Stabilization of a Class of Uncertain Nonlinear Systems
,”
Automatica
,
41
(
5
), pp.
881
888
.10.1016/j.automatica.2004.11.036
26.
Yu
,
S. H.
,
Yu
,
X. H.
,
Shirinzadeh
,
B.
, and
Man
,
Z. H.
,
2005
, “
Continuous Finite Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.10.1016/j.automatica.2005.07.001
27.
Li
,
P.
, and
Yang
,
G. H.
,
2009
, “
Fault-Tolerant Control of Uncertain Nonlinear Systems With Nonlinearly Parameterized Fuzzy Systems
,”
IEEE Multiconference on Systems and Control
, St. Petersburg, Russia,
July 8–10
, pp.
382
387
.
28.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation Via Sliding Mode Technique
,”
Automatica
,
34
(
3
), pp.
379
384
.10.1016/S0005-1098(97)00209-4
29.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Wiley
,
Chichester, New York
.
30.
Li
,
J.-H.
,
Lee
,
P.-M.
,
Jun
,
B.-H.
, and
Lim
,
Y.-K.
,
2008
, “
Point-to-Point Navigation of Underactuated Ships
,”
Automatica
,
44
(
12
), pp.
3201
3205
.10.1016/j.automatica.2008.08.003
31.
Sun
,
Z.
, and
Xia
,
Y.
, and
Na
,
X.
,
2017
, “
Consensus-Based Formation Control With Dynamic Role Assignment and Obstacle Avoidance
,”
IMA J. Math. Control Inf.
,
34
(
1
), pp.
311
335
.10.1093/imamci/dnv047
32.
Li
,
S.
, and
Wang
,
X.
,
2013
, “
Finite-Time Consensus and Collision Avoidance Control Algorithms for Multiple Auvs
,”
Automatica
,
49
(
11
), pp.
3359
3367
.10.1016/j.automatica.2013.08.003
33.
Dong
,
W. J.
,
Farrell
,
J. A.
,
Polycarpou
,
M.
,
Djapic
,
V.
, and
Sharma
,
M.
,
2012
, “
Command Filtered Adaptive Backstepping
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
566
580
.10.1109/TCST.2011.2121907
34.
Ghommam
,
J.
, and
Saad
,
M.
,
2014
, “
Backstepping-Based Cooperative and Adaptive Tracking Control Design for a Group of Underactuated Auvs in Horizontal Plan
,”
Int. J. Control
,
87
(
5
), pp.
1076
1093
.10.1080/00207179.2013.868605
35.
Qi
,
X.
, and
Cai
,
Z.-J.
,
2017
, “
Three-Dimensional Formation Control Based on Filter Backstepping Method for Multiple Underactuated Underwater Vehicles
,”
Robotica
,
35
(
8
), pp.
1690
1711
.10.1017/S0263574716000436
36.
Zhou
,
Q.
,
Wang
,
L.
,
Wu
,
C.
,
Li
,
H.
, and
Du
,
H.
,
2017
, “
Adaptive Fuzzy Control for Nonstrict-Feedback Systems With Input Saturation and Output Constraint
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
47
(
1
), pp.
1
12
.10.1109/TSMC.2016.2557222
37.
Jin
,
X.
,
2016
, “
Fault Tolerant Finite-Time Leaderfollower Formation Control for Autonomous Surface Vessels With {LOS} Range and Angle Constraints
,”
Automatica
,
68
, pp.
228
236
.10.1016/j.automatica.2016.01.064
38.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
39.
Wen
,
G.
,
Ge
,
S. S.
,
Tu
,
F.
, and
Choo
,
Y. S.
,
2017
, “
Artificial Potential Based Adaptive h Synchronized Tracking Control for Accommodation Vessel
,”
IEEE Trans. Indus. Elec.
,
46
(
7
), pp.
5640
5647
.10.1109/TIE.2017.2677330
40.
Jin
,
X.
,
2017
, “
Adaptive Finite Time Fault-Tolerant Tracking Control for a Class of Mimo Nonlinear Systems With Output Constraints
,”
Int. J. Robust Nonlinear Control
,
27
(
5
), pp.
722
741
.10.1002/rnc.3596
You do not currently have access to this content.