Abstract

In digital displacement pump (DDP), the states of valves are nonlinear correlation with the instantaneous flow rate and flow fluctuation. For low-speed working condition, the digital valve has potential to switch several times to improve flow fluctuation. So, the relationship between the valve states and the flow rate is decoded, and a novel optimal fluctuation regulation (OFR) method including OFR-strict (OFR-S) and OFR-relaxation (OFR-R) is designed in this paper. The periodicity and the symmetry of OFR methods are proved and an optimal solution in the predefined minimum characteristic interval (MCI) is realized. Compared to the traditional sequential, partial, and pulse width modulation (PWM) methods, OFR-S has the minimum flow fluctuation, while OFR-R is preferred in low-speed ratio to reduce the digital valve switching frequency. At last, the effects of valve delay and oil compressibility are analyzed. As a theoretical precise optimal solution, OFR method demonstrates its ability in handling nonlinear problems in MCI. And it definitely will be a good base for the nonlinear controller design in the future.

References

1.
Linjama
,
M.
,
2011
, “
Digital Fluid Power: State of the Art
,”
12th Scandinavian International Conference on Fluid Power
, Tampere, Finland, May, pp. 18–20.https://pdfs.semanticscholar.org/21d3/16f4926277d4a6134cb75e132425fb428da4.pdf
2.
Linjama
,
M.
, and
Vilenius
,
M.
,
2005
, “
Improved Digital Hydraulic Tracking Control of Water Hydraulic Cylinder Drive
,”
Int. J. Fluid Power
,
6
(
1
), pp.
29
39
.10.1080/14399776.2005.10781209
3.
Niemi-Pynttäri
,
O.
,
Linjama
,
M.
,
Laamanen
,
A.
, and
Huhtala
,
K.
,
2014
, “
Parallel Pump-Controlled Multi-Chamber Cylinder
,”
ASME
Paper No. FPMC2014-7820.10.1115/FPMC2014-7820
4.
Linjama
,
M.
, and
Vilenius
,
M.
,
2007
, “
Digital Hydraulics-Towards Perfect Valve Technology
,” Ventil,
2
(14), pp.
138
148
.
5.
Tsuchiya
,
S.
,
Yamada
,
H.
, and
Muto
,
T.
,
2001
, “
A Precision Driving System Composed of a Hydraulic Cylinder and High-Speed On/Off Valves
,”
Int. J. Fluid Power
,
2
(
1
), pp.
7
16
.10.1080/14399776.2001.10781097
6.
Payne
,
G. S.
,
Kiprakis
,
A. E.
,
Ehsan
,
M.
,
Rampen
,
W. H. S.
,
Chick
,
J. P.
, and
Wallace
,
A. R.
,
2007
, “
Efficiency and Dynamic Performance of Digital Displacement™ Hydraulic Transmission in Tidal Current Energy Converters
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
2
), pp.
207
218
.10.1243/09576509JPE298
7.
Pedersen
,
N. H.
,
Johansen
,
P.
, and
Andersen
,
T. O.
,
2018
, “
Optimal Control of a Wind Turbine With Digital Fluid Power Transmission
,”
Nonlinear Dyn.
,
91
(
1
), pp.
591
607
.10.1007/s11071-017-3896-0
8.
Rampen
,
W. H. S.
, and
Salter
,
S. H.
,
1990
, “
The Digital Displacement Hydraulic Piston Pump
,”
Ninth International Symposium on Fluid Power, Cambridge
, UK, pp. 33–46.
9.
Rampen
,
W. H. S.
,
Salter
,
S. H.
, and
Fussey
,
A.
,
1991
, “
Constant Pressure Control of the Digital Displacement Pump
,”
Fourth Bath International Fluid Power Workshop
, Fluid Power Systems and Modelling, Bath, UK, pp.
45
62
.
10.
Rampen
,
W.
,
Almond
,
J.
, and
Salter
,
S.
,
1994
, “
The Digital Displacement Pump/Motor Operating Cycle: Experimental Results Demonstrating the Fundamental Characteristics
,”
Seventh International Fluid Power Workshop
, Bath, UK, pp. 321–331.
11.
Ehsan
,
M.
,
Rampen
,
W. H. S.
, and
Salter
,
S. H.
,
2000
, “
Modeling of Digital-Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
210
215
.10.1115/1.482444
12.
Payne
,
G. S.
,
Stein
,
U. B. P.
,
Ehsan
,
M.
,
Caldwell
,
N. J.
, and
Rampen
,
W. H. S.
,
2005
, “
Potential of Digital Displacement Hydraulics for Wave Energy Conversion
,”
Sixth European Wave and Tidal Energy Conference
(EWTEC), Glasgow, UK, Aug. 29–Sept. 2, pp. 365–372.
13.
Song
,
X.
,
2008
, “
Modeling an Active Vehicle Suspension System With Application of Digital Displacement Pump Motor
,”
ASME
Paper No. DETC2008-49035.10.1115/DETC2008-49035
14.
Chapple
,
P.
,
Lindholdt
,
P. N.
, and
Larsen
,
H. B.
,
2014
, “
An Approach to Digital Distributor Valves in Low Speed Pumps and Motors
,”
ASME
Paper No. FPMC2014-7861.10.1115/FPMC2014-7861
15.
Merrill
,
K.
,
Holland
,
M.
, and
Lumkes
,
J.
,
2011
, “
Analysis of Digital Pump/Motor Operating Strategies
,”
52nd National Conference on Fluid Power
, Las Vegas, NV, Mar. 23–25, pp. 1–7.
16.
Merrill
,
K. J.
,
2012
, “
Modeling and Analysis of Active Valve Control of a Digital Pump-Motor
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI3544301/
17.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2013
, “
Simulation of Dynamic Behaviour of a Digital Displacement Motor Using Transient 3D Computational Fluid Dynamics Analysis
,”
ASME
Paper No. FPMC2013-4469.10.1115/FPMC2013-4469
18.
Sniegucki
,
M.
,
Gottfried
,
M.
, and
Klingauf
,
U.
,
2013
, “
Optimal Control of Digital Hydraulic Drives Using Mixed-Integer Quadratic Programming
,”
IFAC Proc. Vol.
,
46
(
23
), pp.
827
832
.10.3182/20130904-3-FR-2041.00013
19.
Rannow
,
M. B.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2016
, “
Discrete Piston Pump/Motor Using a Mechanical Rotary Valve Control Mechanism
,”
Eighth Workshop on Digital Fluid Power
(
DFP16
), Tampere, Finland, May 24–25, pp. 83–94.http://me.umn.edu/~lixxx099/papers/rannow_PbP_DFP16.pdf
20.
Johansen
,
P.
,
Roemer
,
D. B.
,
Andersen
,
T. O.
, and
Pedersen
,
H. C.
,
2017
, “
Discrete Linear Time Invariant Analysis of Digital Fluid Power Pump Flow Control
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
10
), p.
101007
.10.1115/1.4036554
21.
Pedersen
,
N. H.
,
Johansen
,
P.
, and
Andersen
,
T. O.
,
2017
, “
Event-Driven Control of a Speed Varying Digital Displacement Machine
,”
ASME
Paper No. FPMC2017-4260.10.1115/FPMC2017-4260
22.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
23.
Manhartsgruber
,
B.
,
Mikota
,
G.
, and
Scheidl
,
R.
,
2005
, “
Modelling of a Switching Control Hydraulic System
,”
Math. Comput. Modell. Dyn. Syst.
,
11
(
3
), pp.
329
344
.10.1080/13873950500076297
24.
Winkler
,
B.
,
Ploeckinger
,
A.
, and
Scheidl
,
R.
,
2010
, “
A Novel Piloted Fast Switching Multi Poppet Valve
,”
Int. J. Fluid Power
,
11
(
3
), pp.
7
14
.10.1080/14399776.2010.10781010
25.
Mahrenholz
,
J. R.
,
2009
, “
Coupled Multi-Domain Modeling and Simulation of High Speed On/Off Valves
,”
Ph.D. thesis
, Purdue University, West Lafayette, INhttps://docs.lib.purdue.edu/dissertations/AAI1469883/.
26.
Wilfong
,
G. J.
,
2011
, “
Design and Dynamic Analysis of High Speed on/Off Poppet Valves for Digital Pump/Motors
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI10159562/
27.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2014
, “
Optimum Design of Seat Region in Valves Suitable for Digital Displacement Machines
,”
Int. J. Mechatronics Autom.
,
4
(
2
), pp.
116
126
.10.1504/IJMA.2014.062339
28.
Roemer
,
D. B.
,
Bech
,
M. M.
,
Johansen
,
P.
, and
Pedersen
,
H. C.
,
2015
, “
Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2761
2770
.10.1109/TMECH.2015.2410994
You do not currently have access to this content.