Abstract

Accurate tracking of nonminimum phase (NMP) systems is well known to require large amounts of control effort. It is, therefore, of practical value to minimize the effort needed to achieve a desired level of tracking accuracy for NMP systems. There is growing interest in the use of the filtered basis functions (FBF) approach for tracking the control of linear NMP systems because of distinct performance advantages it has over other methods. The FBF approach expresses the control input as a linear combination of user-defined basis functions. The basis functions are forward filtered through the dynamics of the plant, and the coefficients are selected such that the tracking error is minimized. There is a wide variety of basis functions that can be used with the FBF approach, but there has been no work to date on how to select the best set of basis functions. Toward selecting the best basis functions, the Frobenius norm of the lifted system representation (LSR) of dynamics is proposed as an excellent metric for evaluating the performance of linear time varying (LTV) discrete-time tracking controllers, like FBF, independent of the desired trajectory to be tracked. Using the metric, an optimal set of basis functions that minimize the control effort without sacrificing tracking accuracy is proposed. The optimal set of basis functions is shown in simulations and experiments to significantly reduce control effort while maintaining or improving tracking accuracy compared to popular basis functions, like B-splines.

References

References
1.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
1
), pp.
65
68
.10.1115/1.3143822
2.
Torfs
,
D.
,
De Schutter
,
J.
, and
Swevers
,
J.
,
1992
, “
Extended Bandwidth Zero Phase Error Tracking Control of Nonminimal Phase Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
347
351
.10.1115/1.2897354
3.
Gross
,
E.
,
Tomizuka
,
M.
, and
Messner
,
W.
,
1994
, “
Cancellation of Discrete Time Unstable Zeros by Feedforward Control
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
1
), pp.
33
38
.10.1115/1.2900678
4.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
,
1996
, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
930
942
.10.1109/9.508898
5.
Hunt
,
L.
,
Meyer
,
G.
, and
Su
,
R.
,
1996
, “
Noncausal Inverses for Linear Systems
,”
IEEE Trans. Autom. Control.
,
41
(
4
), pp.
608
611
.10.1109/9.489285
6.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
4
), pp.
625
630
.10.1115/1.2802526
7.
Marconi
,
L.
,
Marro
,
G.
, and
Melchiorri
,
C.
,
2001
, “
A Solution Technique for Almost Perfect Tracking of Non-Minimum-Phase, Discrete-Time Linear Systems
,”
Int. J. Control
,
74
(
5
), pp.
496
506
.10.1080/00207170010014557
8.
Kwon
,
D.-S.
, and
Book
,
W. J.
,
1994
, “
A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
2
), p.
193
.10.1115/1.2899210
9.
Trautt
,
T. A.
, and
Bayo
,
E.
,
1997
, “
Inverse Dyamics of Non-Minimum Phase Systems With Non-Zero Initial Conditions
,”
Dyn. Control
,
7
(
1
), pp.
49
71
.10.1023/A:1008260931585
10.
Rigney
,
B. P.
,
Pao
,
L. Y.
, and
Lawrence
,
D. A.
,
2009
, “
Nonminimum Phase Dynamic Inversion for Settle Time Applications
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
989
1005
.10.1109/TCST.2008.2002035
11.
Wen
,
J. T.
, and
Potsaid
,
B.
,
2004
, “
An Experimental Study of a High Performance Motion Control System
,”
American Control Conference
,
Boston, MA
,
June 30–July 2
, pp.
5158
5163
.
12.
Wang
,
H.
,
Kim
,
K.
, and
Zou
,
Q.
,
2013
, “
B-Spline-Decomposition-Based Output Tracking With Preview for Nonminimum-Phase Linear Systems
,”
Automatica
,
49
(
5
), pp.
1295
1303
.10.1016/j.automatica.2013.01.044
13.
Jetto
,
L.
,
Orsini
,
V.
, and
Romagnoli
,
R.
,
2014
, “
Accurate Output Tracking for Nonminimum Phase Nonhyperbolic and Near Nonhyperbolic Systems
,”
Eur. J. Control
,
20
(
6
), pp.
292
300
.10.1016/j.ejcon.2014.09.001
14.
Jetto
,
L.
,
Orsini
,
V.
, and
Romagnoli
,
R.
,
2015
, “
Spline Based Pseudo-Inversion of Sampled Data Non-Minimum Phase Systems for an Almost Exact Output Tracking
,”
Asian J. Control
,
17
(
5
), pp.
1866
1879
.10.1002/asjc.1079
15.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2016
, “
Tracking Control of Linear Time-Invariant Nonminimum Phase Systems Using Filtered Basis Functions
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
1
), p.
011001
.10.1115/1.4034367
16.
Ronde
,
M.
,
van de Molengraft
,
R.
, and
Steinbuch
,
M.
,
2012
, “
Model-Based Feedforward for Inferential Motion Systems, With Application to a Prototype Lightweight Motion System
,”
American Control Conference
(
ACC
),
Montreal, QC, Canada
,
June 27–29
, pp. 5324–5329.
17.
Duan
,
M.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2018
, “
A Limited-Preview Filtered B-Spline Approach to Tracking Control—With Application to Vibration-Induced Error Compensation of a Commercial 3D Printer
,”
Mechatronics
,
56
, pp.
287
296
.10.1016/j.mechatronics.2017.09.002
18.
Kasemsinsup
,
Y.
,
Romagnoli
,
R.
,
Heertjes
,
M.
,
Weiland
,
S.
, and
Butler
,
H.
,
2017
, “
Reference-Tracking Feedforward Control Design for Linear Dynamical Systems Through Signal Decomposition
,”
American Control Conference
(
ACC
),
Seattle, WA
,
May 24–26
, pp. 2387–2392.10.23919/ACC.2017.7963310
19.
Romagnoli
,
R.
, and
Garone
,
E.
,
2019
, “
A General Framework for Approximated Model Stable Inversion
,”
Automatica
,
101
, pp.
182
189
.10.1016/j.automatica.2018.11.044
20.
Frueh
,
J. A.
, and
Phan
,
M. Q.
,
2000
, “
Linear Quadratic Optimal Learning Control (LQL)
,”
Int. J. Control
,
73
(
10
), pp.
832
839
.10.1080/002071700405815
21.
Duan
,
M.
,
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2015
, “
Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach
,”
ASME
Paper No. DSCC2015-9859.10.1115/DSCC2015-9859
22.
Ye
,
Y.
, and
Wang
,
D.
,
2005
, “
DCT Basis Function Learning Control
,”
IEEE/ASME Trans. Mechatronics
,
10
(
4
), pp.
449
454
.10.1109/TMECH.2005.852484
23.
Hamamoto
,
K.
, and
Sugie
,
T.
,
2001
, “
An Iterative Learning Control Algorithm Within Prescribed Input–Output Subspace
,”
Automatica
,
37
(
11
), pp.
1803
1809
.10.1016/S0005-1098(01)00133-9
24.
Bolder
,
J.
,
Oomen
,
T.
, and
Steinbuch
,
M.
,
2013
, “
Exploiting Rational Basis Functions in Iterative Learning Control
,”
52nd IEEE Conference on Decision and Control
(
CDC
),
Florence, Italy
, pp.
7321
7326
.
25.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2018
, “
A Lifted Domain-Based Metric for Performance Evaluation of LTI and LTV Discrete-Time Tracking Controllers
,”
International Symposium on Flexible Automation
,
Kanazawa, Japan
,
July 15–19
, pp.
248
255
.
26.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
,
2012
, “
Analysis and Comparison of Three Discrete-Time Feedforward Model-Inverse Control Techniques for Nonminimum-Phase Systems
,”
Mechatronics
,
22
(
5
), pp.
577
587
.10.1016/j.mechatronics.2011.12.006
27.
Deb
,
A.
,
Sarkar
,
G.
, and
Sen
,
S. K.
,
1994
, “
Block Pulse Functions, the Most Fundamental of All Piecewise Constant Basis Functions
,”
Int. J. Syst. Sci.
,
25
(
2
), pp.
351
363
.10.1080/00207729408928964
28.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
, The NURBS Book,
Springer
,
New York
.
29.
Piegl
,
L.
,
1991
, “
On NURBS: A Survey
,”
IEEE Comput. Graph. Appl.
,
11
(
1
), pp.
55
71
.10.1109/38.67702
30.
Barton
,
K. L.
,
Bristow
,
D. A.
, and
Alleyne
,
A. G.
,
2010
, “
A Numerical Method for Determining Monotonicity and Convergence Rate in Iterative Learning Control
,”
Int. J. Control
,
83
(
2
), pp.
219
226
.10.1080/00207170903131177
31.
Dijkstra
,
B. G.
,
2004
, “
Iterative Learning Control With Applications to a Wafer Stage
,” Ph.D. thesis,
Delft University of Technology
,
Delft, The Netherlands
.
32.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
33.
Lunenburg
,
J.
,
Bosgra
,
O.
, and
Oomen
,
T.
,
2009
, “
Inversion-Based Feedforward Design for Beyond Rigid Body Systems: A Literature Survey
,”
Eindhoven University of Technology
,
Eindhoven, Netherlands, DCT Report No. 2009.105
.
34.
Phan
,
M.
, and
Frueh
,
J.
,
1996
, “
Learning Control for Trajectory Tracking Using Basis Functions
,”
35th IEEE Conference on Decision and Control,
Kobe, Japan
,
Dec.
, pp. 2490–2492.
35.
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2016
, “
Active Assist Device for Simultaneous Reduction of Heat and Vibration in Precision Scanning Stages
,”
Precis. Eng.
,
46
, pp.
193
205
.10.1016/j.precisioneng.2016.04.014
36.
Laub
,
A. J.
,
2005
, Matrix Analysis for Scientists and Engineers,
Siam
,
Philadelphia, PA
.
37.
Altintas
,
Y.
, and
Okwudire
,
C. E.
,
2009
, “
Dynamic Stiffness Enhancement of Direct-Driven Machine Tools Using Sliding Mode Control With Disturbance Recovery
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
335
338
.10.1016/j.cirp.2009.03.045
38.
Okwudire
,
C.
,
Ramani
,
K.
, and
Duan
,
M.
,
2016
, “
A Trajectory Optimization Method for Improved Tracking of Motion Commands Using CNC Machines That Experience Unwanted Vibration
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
373
376
.10.1016/j.cirp.2016.04.100
39.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2016
, “
Regularized Filtered Basis Functions Approach for Accurate Tracking of Discrete-Time Linear Time Invariant Systems With Bounded Random Uncertainties
,”
ASME
Paper No. DSCC2016-9885.10.1115/DSCC2016-9885
40.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2018
, “
Robust Filtered Basis Functions Approach for Feedforward Tracking Control
,”
ASME
Paper No. DSCC2018-9196.10.1115/DSCC2018-9196
41.
Oppenheim
,
A. V.
,
Schafer
,
R. W.
, and
Buck
,
J. R.
,
1989
, Discrete-Time Signal Processing,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Riley
,
K. F.
,
Hobson
,
M. P.
, and
Bence
,
S. J.
,
2006
, Mathematical Methods for Physics and Engineering: A Comprehensive Guide,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.