Abstract

One of the main factors limiting the efficiency of spark-ignited (SI) engines is the occurrence of engine knock. In high temperature and high pressure in-cylinder conditions, the fuel–air mixture auto-ignites creating pressure shock waves in the cylinder. Knock can significantly damage the engine and hinder its performance; as such, conservative knock control strategies are generally implemented which avoid such operating conditions at the cost of lower thermal efficiencies. Significant improvements in the performance of conventional knock controllers are possible if the properties of the knock process are better characterized and exploited in knock controller designs. One of the methods undertaken to better characterize knocking instances is to employ a probabilistic approach, in which the likelihood of knock is derived from the statistical distribution of knock intensity (KI). In this paper, it is shown that KI values at a fixed operating point for single fuel and dual fuel engines are accurately described using a mixed lognormal distribution. The fitting accuracy is compared against those for a randomly generated mixed-lognormally distributed dataset, and shown to exceed a 95% accuracy threshold for almost all of the operating points tested. Additionally, this paper discusses a stochastic knock control approach that leverages the mixed lognormal distribution to adjust spark timing based on KI measurements. This more informed knock control strategy would allow for improvements in engine performance and fuel efficiency by minimizing knock occurrences.

References

1.
Haskell
,
W.
, and
Bame
,
J.
,
1965
, “
Engine Knock -An End-Gas Explosion
,”
SAE
Paper No. 650506. 10.4271/650506
2.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.10.1016/j.apenergy.2011.11.079
3.
Guzzella
,
L.
, and
Onder
,
C.
,
2014
, “
Control of Engine Systems: Engine Knock
,”
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
Berlin
, pp.
199
209
.
4.
Ayala
,
F.
,
Gerty
,
M.
, and
Heywood
,
J.
,
2006
, “
Effects of Combustion Phasing, Relative Air-Fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency
,”
SAE
Paper No. 2006-01-0229. 10.4271/2006-01-0229
5.
Baranski
,
J.
,
Anderson
,
E.
,
Grinstead
,
K.
,
Hoke
,
J.
, and
Litke
,
P.
,
2013
, “
Control of Fuel Octane for Knock Mitigation on a Dual-Fuel Spark-Ignition Engine
,”
SAE
Paper No. 2013-01-0320.10.4271/2013-01-0320
6.
Cohn
,
D. R.
,
Bromberg
,
L.
, and
Heywood
,
J. B.
,
2005
, “
Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging for Cost Effective Reduction of Oil Dependence and CO2 Emissions
,” Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA.
7.
Daniel
,
R.
,
Wang
,
C.
,
Xu
,
H.
,
Tian
,
G.
, and
Richardson
,
D.
,
2012
, “
Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol
,”
SAE Int. J. Fuels Lubr.
,
5
(
2
), pp.
772
784
.10.4271/2012-01-1152
8.
Viollet
,
Y.
,
Abdullah
,
M.
,
Alhajhouje
,
A.
, and
Chang
,
J.
,
2015
, “
Characterization of High Efficiency Octane-On-Demand Fuels Requirement in a Modern Spark Ignition Engine With Dual Injection System
,”
SAE
Paper No. 2015-01-1265.10.4271/2015-01-1265
9.
Naber
,
J.
,
Blough
,
J.
,
Frankowski
,
D.
,
Goble
,
M.
, and
Szpytman
,
J. E.
,
2006
, “
Analysis of Combustion Knock Metrics in Spark-Ignition Engines
,”
SAE
Paper No. 2006-01-0400. 10.4271/2006-01-0400
10.
Spelina
,
J. M.
,
Jones
,
J. C. P.
, and
Frey
,
J.
,
2014
, “
Characterization of Knock Intensity Distributions—Part 1: Statistical Independence and Scalar Measures
,”
Proc. Inst. Mech. Eng., Part D
,
228
, pp.
117
128
.10.1177/0954407013496233
11.
Spelina
,
J. M.
,
Jones
,
J. C. P.
, and
Frey
,
J.
,
2013
, “
Characterization of Knock Intensity Distributions—Part 2: Parametric Models
,”
Proc. Inst. Mech. Eng., Part D
,
227
, pp.
1650
1660
.10.1177/0954407013496234
12.
Stotsky
,
A. A.
,
2008
, “
Statistical Engine Knock Modelling and Adaptive Control
,”
Proc. Inst. Mech. Eng., Part D
,
222
, pp.
429
439
.10.1243/09544070JAUTO707
13.
Jones
,
J. C. P.
,
Frey
,
J.
,
Muske
,
K. R.
, and
Scholl
,
D. J.
,
2010
, “
A Cumulative-Summation-Based Stochastic Knock Controller
,”
Proc. Inst. Mech. Eng., Part D
,
224
, pp.
969
983
.10.1243/09544070JAUTO1505
14.
Jones
,
J. C. P.
,
Frey
,
J.
, and
Muske
,
K. R.
,
2009
, “
A Fast-Acting Stochastic Approach to Knock Control
,”
IFAC Proc. Vol.
,
42
(
26
), pp.
16
23
.10.3182/20091130-3-FR-4008.00003
15.
Jones
,
J. C. P.
,
Spelina
,
J. M.
, and
Frey
,
J.
,
2013
, “
Likelihood-Based Control of Engine Knock
,”
IEEE Trans. Control Syst. Technol.
,
21
, pp.
2169
2180
.10.1109/TCST.2012.2229280
16.
Penese
,
M.
,
Damasceno
,
C.
,
Bucci
,
A.
, and
Montanari
,
G.
,
2005
, “
Sigma® on Knock Phenomenon Control of Flexfuel Engines
,”
SAE
Paper No. 2005-01-3990. 10.4271/2005-01-3990
17.
Cavina
,
N.
,
Po
,
G.
, and
Poggio
,
L.
,
2006
, “
Ion Current Based Spark Advance Management for Maximum Torque Production and Knock Control
,”
ASME
Paper No. ESDA2006-95558. 10.1115/ESDA2006-95558
18.
Zhu, I. Haskara
,
G.
, and
Winkelman
,
J.
,
2005
, “
Stochastic Limit Control and Its Application to Spark Limit Control Using Ionization Feedback
,”
American Control Conference
(
ACC
), Portland, OR, June 8–10.10.1109/ACC.2005.1470808
19.
Pamminger
,
M.
,
Sevik
,
J.
,
Scarcelli
,
R.
,
Wallner
,
T.
, and
Hall
,
C.
,
2017
, “
Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine
,”
SAE
Paper No. 2017-01-0661. 10.4271/2017-01-0661
20.
Pamminger
,
M.
,
Sevik
,
J.
,
Scarcelli
,
R.
,
Wallner
,
T.
,
Wooldridge
,
S.
,
Boyer
,
B.
, and
Hall
,
C. M.
,
2016
, “
Evaluation of Knock Behavior for Natural Gas—Gasoline Blends in a Light Duty Spark Ignited Engine
,”
SAE Int. J. Engines
,
9
(
4
), p.
2153
.10.4271/2016-01-2293
21.
Hall
,
C.
,
Sevik
,
J.
,
Pamminger
,
M.
, and
Wallner
,
T.
,
2016
, “
Hydrocarbon Speciation in Blended Gasoline-Natural Gas Operation on a Spark-Ignition Engine
,”
SAE
Paper No. 2016-01-2169. 10.4271/2016-01-2169
22.
Baral
,
B.
, and
Raine
,
R.
,
2008
, “
Knock in a Spark Ignition Engine Fuelled With Gasoline-Kerosene Blends
,”
SAE
Paper No. 2008-01-2417. 10.4271/2008-01-2417
23.
Mittal
,
V.
,
Revier
,
B.
, and
Heywood
,
J.
,
2007
, “
Phenomena That Determine Knock Onset in Spark-Ignition Engines
,”
SAE
Paper No. 2007-01-0007. 10.4271/2007-01-0007
24.
Kassa
,
M.
,
2017
, “
Analysis and Control of Compression-Ignition and Spark-Ignited Engines Operating With Dual-Fuel Combustion Strategy
,” Ph.D. dissertation, Illinois Institute of Technology. Ann Arbor, MI.
You do not currently have access to this content.