Time-optimal motion-planning has been a topic of active research in the literature for a while. This paper presents a new approach for velocity profile generation, which is a subproblem in motion-planning. In the case of simplified constraints, profile generation can be translated to a convex optimization problem. However, some practical constraints (e.g., velocity-dependent torque, viscous friction) destroy the convexity. The proposed method can obtain the global optimum of the nonconvex optimization problem. The experimental results with a three degrees-of-freedom (DOF) robot manipulator are also presented in this paper.

References

References
1.
Chang
,
Y.-C.
,
Chen
,
C.-W.
, and
Tsao
,
T.-C.
,
2018
, “
Near Time-Optimal Real-Time Path Following Under Error Tolerance and System Constraints
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071004
.
2.
Arab
,
A.
,
Yu
,
K.
,
Yi
,
J.
, and
Song
,
D.
,
2016
, “
Motion Planning for Aggressive Autonomous Vehicle Maneuvers
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Fort Worth, TX, Aug. 21–25, pp.
221
226
.
3.
LaValle
,
S. M.
,
2006
, Planning Algorithms,
Cambridge University Press
,
New York
.
4.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Time-Optimal Trajectory Planning of Cable-Driven Parallel Mechanisms for Fully Specified Paths With g1-Discontinuities
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
7
), p.
071007
.
5.
Otte
,
M.
, and
Frazzoli
,
E.
,
2016
, “
RRTX: Asymptotically Optimal Single-Query Sampling-Based Motion Planning With Quick Replanning
,”
Int. J. Rob. Res.
,
35
(
7
), pp.
797
822
.
6.
Xidias
,
E. K.
,
2018
, “
Time-Optimal Trajectory Planning for Hyper-Redundant Manipulators in 3D Workspaces
,”
Rob. Comput.-Integr. Manuf.
,
50
, pp.
286
298
.
7.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
Schutter
,
J. D.
, and
Diehl
,
M.
,
2009
, “
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2318
2327
.
8.
Lipp
,
T.
, and
Boyd
,
S.
,
2014
, “
Minimum-Time Speed Optimisation Over a Fixed Path
,”
Int. J. Control
,
87
(
6
), pp.
1297
1311
.
9.
Shen
,
P.
,
Zhang
,
X.
, and
Fang
,
Y.
,
2017
, “
Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
888
895
.
10.
Oberherber
,
M.
,
Gattringer
,
H.
, and
Muller
,
A.
,
2015
, “
Successive Dynamic Programming and Subsequent Spline Optimization for Smooth Time Optimal Robot Path Tracking
,”
Mech. Sci.
,
6
(
2
), pp.
245
254
.
11.
Bobrow
,
J.
,
Dubowsky
,
S.
, and
Gibson
,
J.
,
1985
, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
3
17
.
12.
Consolini
,
L.
,
Locatelli
,
M.
,
Minari
,
A.
, and
Piazzi
,
A.
,
2016
, “
A Linear-Time Algorithm for Minimum-Time Velocity Planning of Autonomous Vehicles
,”
24th Mediterranean Conference on Control and Automation
(
MED
), Athens, Greece, June 21–24, pp. 490–495.
13.
Frego
,
M.
,
Bertolazzi
,
E.
,
Biral
,
F.
,
Fontanelli
,
D.
, and
Palopoli
,
L.
,
2016
, “
Semi-Analytical Minimum Time Solutions for a Vehicle Following Clothoid-Based Trajectory Subject to Velocity Constraints
,”
European Control Conference
(
ECC
), Aalborg, Denmark, June 29–July 1, pp.
2221
2227
.
14.
Nagy
,
Á.
, and
Vajk
,
I.
,
2018
, “
LP-Based Velocity Profile Generation for Robotic Manipulators
,”
Int. J. Control
,
91
(
3
), pp.
582
592
.
15.
Debrouwere
,
F.
,
Loock
,
W. V.
,
Pipeleers
,
G.
,
Dinh
,
Q. T.
,
Diehl
,
M.
,
Schutter
,
J. D.
, and
Swevers
,
J.
,
2013
, “
Time-Optimal Path Following for Robots With Convex-Concave Constraints Using Sequential Convex Programming
,”
IEEE Trans. Rob.
,
29
(
6
), pp.
1485
1495
.
16.
Hughes
,
A.
, and
Drury
,
B.
,
2013
, “Chapter Three—Conventional D.C. Motors,” Electric Motors and Drives,
4th
ed.,
A.
Hughes
and
B.
Drury
, eds.,
Newnes, Oxford, UK
, pp.
73
111
.
17.
Jang
,
G.
,
Yeom
,
J.
, and
Kim
,
M.
,
2007
, “
Determination of Torque-Speed-Current Characteristics of a Brushless dc Motor by Utilizing Back-Emf of Non-Energized Phase
,”
J. Magn. Magn. Mater.
,
310
(
2
), pp.
2790
2792
.
18.
Oriental Motor U.S.A. Corp.
,
2018
, “
Speed—Torque Curves for Stepper Motors
,” Oriental Motor Co., Ltd., Tokyo, Japan, accessed Nov. 28, 2018, https://www.orientalmotor.com
19.
Coppelia Robotics
,
2018
, “
V-REP—Virtual Robot Experimentation Platform
,” Coppelia Robotics GmbH, Zürich, Switzerland, accessed Nov. 28, 2018, http://www.coppeliarobotics.com
20.
Gurobi Optimization, Inc.
,
2018
, “
Gurobi Optimizer Version 7.0.2. [Computer Software]
,” Gurobi Optimization, LLC., Beaverton, OR, accessed Nov. 28, 2018, http://www.gurobi.com
21.
Consolini
,
L.
,
Locatelli
,
M.
,
Minari
,
A.
,
Nagy
,
Á.
, and
Vajk
,
I.
,
2019
, “
Optimal Time-Complexity Speed Planning for Robot Manipulators
,”
IEEE Trans. Rob.
,
35
(
3
), pp.
790
797
.
You do not currently have access to this content.